
Réponses aux exercices
Réponse 1. Soit G un graphe connexe, et T un arbre couvrant de G. Enraciner T en un sommet r
quelconque de G, et colorier chaque sommet u de G par sa distance à r dans T modulo 2. Chaque
sommet a une couleur différente de son parent dans T , et r à au moins un enfant, celui-ci étant de
couleur différente de r.
Réponse 2. Considérons l’algorithme distribué probabiliste suivant. Chaque sommet u n’ayant pas en-
core décidé une couleur choisit la couleur c(u) = 0 ou 1 aléatoirement uniformément. Si, à la suite de
ce choix, u a un voisin de couleur différente de la sienne, alors u décide la couleur choisie.
Cet algorithme réalise une 2-coloration faible. En effet, avec probabilité 1, tout sommet u finit par choi-
sir une couleur différente de la couleur choisie (ou décidée précédemment) par un voisin v. De plus,
lorsqu’un sommet u décide une couleur, nécessairement un de ses voisins, v, a choisi une couleur c(v)
différente, et v décide c(v) 6= c(u). Le sommet u satisfait donc la 2-coloration faible.
A chaque phase, la probabilité que u décide une couleur est au moins 1/2, car, pour tout voisin v de u,
Pr[c(u) = c(v)] = 1/2. Soit Xu la variable aléatoire égale au temps auquel u décide sa couleur. On a
Pr[Xu ≥ t] ≤ 1/2t, et donc Pr[Xu ≥ 2 log2 n] ≤ 1/n2. Soit X = maxuXu le temps auquel tous les
sommets ont une couleur. Par sous linéarité des probabilités, on obtient :

Pr[X ≥ 2 log2 n] ≤
∑

u∈V (G)

Pr[Xu ≥ 2 log2 n] ≤ n/n2 = 1/n.

Réponse 3. There are
(

c′

bc′/2c
)

subsets of {1, . . . , c′} with cardinality bc′/2c. Label these subsets from

1 to
(

c′

bc′/2c
)

in lexicographic order. Since
(

c′

bc′/2c
)
≥ c, one can associate a subset Si to each color i ∈

{1, . . . , c}. Let v be a node colored i ∈ {1, . . . , c}, and let w be a neighbor of v colored j ∈ {1, . . . , c}
with i 6= j. Since Si 6= Sj , there exists x ∈ Si \ Sj . Node v recolors itself with color x. If every node
does so, one gets a weak c′-coloring since x ∈ {1, . . . , c′} and the neighhbor w of v picks color y ∈ Sj
necessarily different from the color x /∈ Sj .
Réponse 4. Nodes are initially weakly colored with colors in {1, . . . , c}, and we recolor them with two
colors a and b so that to get a weak 2-coloring. We proceed in c rounds r = 1, . . . , c. At round r, we
recolor the nodes initially colored r.
Procedure RECOLOR (at node v) :

for r = 1 to c do
if v is initially colored r then

if v has all its neighbors initially colored ≥ r then v recolors itself a (Rule 1)
else (i.e., v has a neighbor which was recolored) (Rule 2)

if all recolored neighbors of v have color b
then v recolors itself a
else v recolors itself b.

By construction, if node v recolors itself according to Rule 2, then v has a neighbor colored differently
from itself. So, let v be a node that recolors itself a according to Rule 1. Assume v was initially colored
r. Since v has all its neighbors colored with colors≥ r, and since the initial colors form a weak coloring,
v necessarily possesses a neighbor w with initial color r′ > r. At round r′, w will apply Rule 2, and will
recolor itself b. Hence, v and w will have different colors.
Réponse 5. Each round ensables to reduce the number of colors from c to c′ where

(
c′

bc′/2c
)
= 4c

′
√
πc′

(1+

o(1)) ≥ c. We have c′ = log4 c + O(log log c), and thus c′ ≤ log2 c for c large enough. The number
of rounds to reach a weak 4-coloring is thus O(log∗ k). Since reducing from 4 to 2 colors requires
a constant number of rounds, we get that weak 2-coloring a graph is possible in constant number of
rounds whenever there is a way to weakly color the nodes with k = O(1) colors. This is for instance the
case of the regular graphs with maximum degree 3. (See Moni Naor, Larry J. Stockmeyer : What Can
be Computed Locally? SIAM J. Comput. 24(6) : 1259-1277 (1995)).

EPIT2017: Lower Bounds in Distributed Computing

Solutions

1 Covering and valence in consensus algorithms

Consider an obstruction-free binary consensus algorithm using atomic read-write registers.
Let P be bivalent from Cβ, where β is a block write by some R ⊆ P . Let γ be a schedule

of some z /∈ P such that z decides in Cγ. Show that z must write to a register not covered by
R in C.

Suppose not, i.e., for some γ ∈ z∗, z decides a value v ∈ {0, 1} in Cγ writing only to registers
covered by R in C. Thus, in no process in P can distinguish Cγβα from Cβα where α is a
P -only schedule. As Cβ is bivalent, we can choose Cβα and, thus, Cγβα, to decide 1 − v—a
contradiction.

2 Space complexity of mutual exclusion

1. Show that any 2-process read-write mutual-exclusion alogirithm requires at least 2 registers.

Let p1 run its TS (trying section) until it is about to perform its first write: such a
schedule must exist, as otherwise p2 may enter its CS without noticing p1. Let α1 be
the corresponding schedule. Since α1 is indistinhguishable to p2 from an empty schedule,
there exists a schedule α ∈ p∗2 such that p2 is in its CS at the end of α1α.

If p2 only writes to the register covered by p1 in α1α, then we can wake up p1 and let it
overwrite all the traces of p2 and enter its CS—a contradiction.

Thus, p2 must write to a distinct register in α1α.

2. What about 3 processes? Can you show that 3 registers are necessary?

3. Finally, prove the general statement: n-process algorithm requires n registers.

We prove the general case, without wasting time on the 3-process scenario.

By induction, we are going to prove the following claim:

Let C be any configuration in which every process is in its remainder section
(RS). For all k = 1, . . . , n, there exists a schedule α by Pk = {p1, . . . , pk}, such
that:

• every process in Pk is about to write to a distinct register in Cα, and

• there exists a schedule α′ by Pk such that (1) every process is in the re-
mainder section in Cα′ and (2) Cα and Cα′ differ only in the local states
of processes in Pk.

1

The base case k = 1 is immediate: simply run p1 from C until it is about to perform its
first write. No other process can distinguish the resulting configuration from C.

Now suppose that the claim holds for some k = 1, . . . , n− 1. Let C0 be the configuration
after α. Let D0 = C0β0γ0 be the extension of C0 by Pk, where β0 is the block write by Pk
(on a set k distinct registers B0), such that every process in Pk is in its RS in D0. Since
the algorithm deadlock-free, such an extension exists.

Now we can reuse the induction hypothesis and get a configuration C1 = D0α0 in which
Pk cover a (possibly different from B0) set of k registers B1, etc.

So we get an infinite chain of configurations:

C
α
// C0

β0γ0// D0
α0 // C1

β1γ1// D1
α1 // C2

β2γ2//

where each Ci satisfies the claim for Pk.

Since there are only finitely many registers there must exist Ci and Cj (i < j), such that
the same set B of k registers is covered by Pk in Ci and Cj .

Now we extend Ci with steps of pk+1 until it is about to write to a register not in B. Such
an extension C ′i = Ciψ exists, as otherwise pk+1 can enters its CS and then all the traces
of its presence in the CS will be overwritten by the subsequent block write βi.

Notice that, since all steps of pk+1 are overwritten by the block write in Ciψβi, the
resulting configuration C ′j = C ′jψβiγiαi . . . βj−1γj−1αj−1 is indistintinguishable from Cj
for any process except pk+1. Thus, C ′j satisfies the claim for Pk+1 = {p1, . . . , pk+1}:
(1) every process in Pk+1 covers a distinct register in C ′j and (2) only processes in Pk can
distinguish C ′j from some configuration in which every process is in its RS.

Typos and mistakes are possible in this draft. If you find any, please let me know:
petr.kuznetsov@telecom-paristech.fr.

2

Network Algorithms class EPIT 2017, May 16

Prof. Patt-Shamir

Solutions

Problem 1. We use the maximum-finding protocol shown in class, but each node v, instead of

sending its input value xv (using O(logM) bits), sends yv
def
=
⌈
log1+ε xv

⌉
. Let r be the maximal value

that reaches the root. The root outputs (1 + ε)r as the maximum. Let X = max {xv}, i.e., the true

maximum. The approximation is due only to rounding, so we have that

(1 + ε)r = (1 + ε)dlog1+ε Xe ≥ (1 + ε)log1+ε X = X , and

(1 + ε)r = (1 + ε)dlog1+ε Xe < (1 + ε)log1+ε X+1 = X · (1 + ε) .

Regarding message length, for 0 < ε ≤ 1 we have that log1+εX = logX
log 1+ε = Θ(logX

ε) , and therefore

the number of bits requited to encode yv is O(log logX
ε) = O(log logM + log ε−1). (Note that this is

actually better than the expression in the question.)

Problem 2. (Sketch.) The idea is to consider two rings of sizes n > n′ > 1, and prove, by induction

on time, that all nodes in both rings maintain the same state at step t, for t ≥ 0. The base of the

induction is by assumption of that all nodes have the same initial state, and the inductive step follows

from the assumption that all nodes run the same code. This means that if a node in one ring outputs

at time t “size is m” then all nodes, in both rings, will make the same output at time t, which is wrong

for at least one of the rings.

Problem 3. (Sketch.) First prove, by induction on time, that at time t, all nodes at distance at

most t have dv ≤ t. Next prove, by induction on distance, that at any time t, a node v at distance

r ≥ t from the source have dv ≥ t.

Problem 4. Consider the following labeled 5-node line graph: 1 − 2 − 4 − 3 − 5 . The edge

3 − 4 is removed but it is not killed by any node. (The edge 2 − 4 is killed by 1 .)

Problem 5. By Markov’s Inequality,

Pr[at least |E|/4 edges removed] ≥ 1

3
.

Call a round is successful if it eliminates at least a 1/4 of the edges. Then by the above, each round is

independently successful with probability at least 1/3, and hence the expected number of successful

rounds in any T rounds is at least T/3. By Chernoff’s bound,

Pr[at most T/6 successful rounds ot of T rounds] ≤ e−T/12 .

Now, since in each successful round the number of edges is reduced by a factor of at least 3/4, we may

conclude that in T rounds, with probability at least 1 − e−Ω(T), the number of surviving edges is at

most |E|(3/4)T/6. Plugging in T ∈ Ω(log n) concludes the proof.

1

Problem 6. Say that a path is nearly shortest if its length is at most one more than the distance

between its endpoints. First we prove that if a path is nearly shortest, then it can be broken into

at most 2 paths such that each of them is a (truly) shortest path between its endpoints. It follows

that any instance with k packets with routes which are nearly shortest can be replaced by two packets

whose routes are shortest paths. This immediately implies that no packet suffers more than 2k − 1

delays. Moreover, since a packet is never delayed by its sibling “subpacket”, the number of delays is

at most 2k − 2.

As a simple example, consider k packets, where packet i has the ith highest priority. The route of

packet i is 1 − 2 − · · · i+1 − i+1 − i+2 (the (i + 1)th edge is a self loop). Clearly the routes

are nearly shortest, and it can be verified that packet i is delayed 2(i − 1) times. The average delay

is therefore
1

k

k∑
i=1

2(i− 1) =
2

k
· k(k − 1)

2
= k − 1 .

2

Spring School on Theoretical Informatics

Porquerolles, May 14-19, 2017

Correction sketches of the exercises related to Michel
Raynal’s lectures

Exercise 1: on the kFK universal construction

Trivial.
It is easy to find a counter-example in which same pattern occurs in which STATE.SC(ls) returns
always false.

Exercise 2: on operations on memory locations

Objects that support read and one of decrement and multiply have consensus number 1 and can-
not be combined to solve wait-free consensus for 2 or more processes.

However, a system that supports all three instructions can solve wait-free binary consensus for any
number of processes. The protocol uses a single memory location initialized to 1. Processes with
input 0 perform decrement(), while processes with input 1 perform multiply(n). The second
operation by each process is read (). If the value returned is positive, then the process decides 1. If it
is negative, then the process decides 0.

2 Solution to stateless flooding

Let us introduce notation that we use for the proofs. A device is visited if it receives the message at least once. An edge
is used if the message was sent over it at least once. It is unused otherwise. A visited device is a border if it has an adjacent
unused link. A visited device that is not a border is internal.

Lemma 1 In SF, every border device holds a message in SQ to be sent over every unused link and it never holds a message
to be sent over a used link.

Proof: We prove the lemma by induction. The source sends messages over the links to its neighbors. Therefore, right before
the transmission, the source is a border device with every link unused and a message to transmit over this link. Therefore,
the conditions of the lemma hold. Assume the conditions hold at some step of a computation. Let us consider the next
step: a transmission of the message from device a to device b. Device b may be visited or not visited. If b is not visited,
then all its links, except for link to a, are unused. When b receives a message from a, it becomes a border device and it
holds a message to every neighbor except a. This satisfies the conditions of the lemma. If b is already visited, then, by
assumption, it has a message to be sent to a in its SQ. This message is a mate of the message received by b from a. By
the algorithm, these two messages are discarded. That is, once the message is transmitted to a visited device and uses the
channel, there are no messages to be sent over this used channel. Again, the conditions of the lemma hold. ⇤

Theorem 1 SF guarantees termination and delivery from the source to all target devices connected to the source.

Proof: Once the source device has a message to send, it sends to all its neighbors. That is, it becomes a border device.
According to Lemma 1, every border device has a message to transmit over unused channels. Since we consider fair
computations of routing algorithms, this message is eventually going to be transmitted. If the receiver device is not visited,
it becomes visited and sends messages to all its neighbors. Eventually, all devices connected to the source will be visited, and
all channels used. That is, SF delivers the message to all devices connected to the source. Note that according to Lemma 1,
once the channel is used, there are no messages to be sent across it. That is, SF terminates. ⇤

2

	Exercise 1: on the kFK universal construction
	Exercise 2: on operations on memory locations

