

Local Distributed Computing

Pierre Fraigniaud

École de Printemps en Informatique Théorique Porquerolles 14-19 mai 2017

LOCAL model

An abstract model capturing the essence of locality:

- Processors connected by a network G=(V,E)
- Each processor (i.e., each node) has an Identity
- Synchronous model (sequence of rounds)
- All processor start simultaneously
- No failures all processors

Complexity as #rounds

At each round, each node:

- Sends messages to neighbors
- Receives messages from neighbors
- Computes

#rounds measures locality

t-round Algorithm **A**:

Algorithm **B**:

- Gather all data at distance at most t from me
- 2. Individually simulate the **t** rounds of **A**

A Case Study: Distributed Coloring

3-coloring cycles

- Symmetry-breaking task
- Application to frequency assignment in radio networks

Instances: same graph, but different ID-assignments

Cole & Vishkin (1986)

Current colors:

101001100101110

0100010**1**01**0**1110

b = bit-value

k = bit-position

new color =
$$(k,b)$$
 = $2k+b$ (k',b')

$$C(V) = C(V') \Rightarrow (k,b) = (k',b')$$

Complexity of Cole-Vishkin

- current colors on B bits
- new colors on \[\log B \right] + 1 bits
- Iterated logarithms:

 - $\log^{(k+1)} x = \log \log^{(k)} x$
- $\log^* x = \min \{ k : \log^{(k)} x < 1 \}$

Cole-Vishkin: O(log*n) rounds

Linial Lower Bound (1992)

Distance-1 neighborhoods: (2,5,1) (4,6,1) (5,1,4)

(2,5,1) consistent with (5,1,4) (2,5,1) not consistent with (4,6,1)

Configuration graph Gn,1

- Nodes = distance-1 neighborhood
- Edges = between consistent neighborhoods

Configuration graph Gn,t

Definition

- node = $(x_0 x_1 ... x_{t-1} x_t x_{t+1} x_{t+2} ... x_{2t})$ = a view of x_t at distance t in some cycle
- edge = $\{(x_0 \dots x_{t-1} x_t x_{t+1} \dots x_{2t}), (x_1 \dots x_t x_{t+1} x_{t+2} \dots x_{2t} y)\}$

Chromatic number X(G) = minimum #colors to proper color G

Lemma Algorithm in t-rounds for k-coloring $C_n \Rightarrow X(G_{n,t_n}) \leq k$

2-coloring C_{2k}

Theorem 2-coloring C_{2k} requires at least k-1 rounds

Proof If t≤k-2 then there exists an odd-cycle in G_{2k,t}

```
• (X_0X_1 \dots X_{2k-4})
```

- (X₁ ... X_{2k-4}y)
- (X₂ ... X_{2k-4}yZ)
- (X₃ ... X_{2k-4}yZX₀)
- $(x_4 ... x_{2k-4}yzx_0x_1)$ (2k

(2k-1)-cycle

- •
- (X_{2k-4}yzx₀ ... X_{2k-7})
- (yzx₀ ... x_{2k-6})
- (ZX₀ ... X_{2k-5})

3-coloring C_n

Theorem 3-coloring C_n requires $\Omega(\log^* n)$ rounds

Proof Show that if $t = o(log^*n)$ then $X(G_{n,t}) = \omega(1)$

$(\Delta + 1)$ -coloring

 Δ = maximum degree

For every graph G, $X(G) \leq \Delta + 1$

Greedily constructible

Complexity of $(\Delta + 1)$ -coloring as a function of n

Theorem (Panconesi & Srinivasan, 1995)

 $(\Delta+1)$ -coloring algorithm in $2^{O(\sqrt{\log n})}$ rounds

Theorem (Linial, 1992)

 $(\Delta+1)$ -coloring requires $\Omega(\log^* n)$ rounds

Complexity of $(\Delta + 1)$ -coloring as a function of n and Δ

Linial (1992) cf. also Goldberg, Plotkin and Shannon (1988)	$O(log*n + \Delta^2)$
Szegedy & Vishwanathan (1993)	$\Omega(\Delta \log \Delta)$ for iterative algorithms
Kuhn & Wattenhofer (2006)	$O(\log^* n + \Delta \log \Delta)$ iterative
Barenboim & Elkin (2009) Kuhn (2009)	$O(log*n + \Delta)$
Barenboim (2015)	$O(log*n + \Delta^{3/4})$
F., Heinrich & Kosowski (2016)	O(log*n + √Δ)

Randomized algorithm for $(\Delta + 1)$ -coloring

```
Algorithme distribué de (\Delta+1)-coloration pour un sommet u: début c(u) \leftarrow \bot
c(u) \leftarrow \emptyset
\operatorname{tant} \ \operatorname{que} \ c(u) = \bot \ \operatorname{faire}
\operatorname{choisir} \ \operatorname{une} \ \operatorname{couleur} \ \ell(u) \in \{0,1,\ldots,\Delta+1\} \setminus C(u) \ \operatorname{avec}
\Pr[\ell(u)=0] = \tfrac{1}{2}, \operatorname{et} \Pr[\ell(u)=\ell] = \tfrac{1}{2(\Delta+1-|C(u)|)} \operatorname{pour} \ell \in \{1,\ldots,\Delta+1\} \setminus C(u)
\operatorname{envoyer} \ \ell(u) \ \operatorname{aux} \ \operatorname{voisins} \ \operatorname{et} \ \operatorname{recevoir} \ \operatorname{la} \ \operatorname{couleur} \ \ell(v) \ \operatorname{de} \ \operatorname{chaque} \ \operatorname{voisin} \ v
\operatorname{si} \ \ell(u) \neq 0 \ \operatorname{et} \ \ell(v) \neq \ell(u) \ \operatorname{pour} \ \operatorname{tout} \ \operatorname{voisin} \ v \ \operatorname{alors} \ c(u) \leftarrow \ell(u) \ \operatorname{sinon} \ c(u) \leftarrow \bot
\operatorname{envoyer} \ c(u) \ \operatorname{aux} \ \operatorname{voisins} \ \operatorname{et} \ \operatorname{recevoir} \ \operatorname{la} \ \operatorname{couleur} \ c(v) \ \operatorname{de} \ \operatorname{chaque} \ \operatorname{voisin} \ v
\operatorname{ajouter} \ \operatorname{a} \ C(u) \ \operatorname{les} \ \operatorname{couleurs} \ \operatorname{des} \ \operatorname{voisins} \ v \ \operatorname{tels} \ \operatorname{que} \ c(v) \neq \bot
```

fin.

Analysis

 $\Pr[u \text{ termine}] = \Pr[\ell(u) \neq 0 \text{ et aucun } v \in N(u) \text{ satisfait } \ell(v) = \ell(u)]$

$$= \operatorname{Pr}[\forall v \in N(u), \ell(v) \neq \ell(u) \mid \ell(u) \neq 0] \cdot \operatorname{Pr}[\ell(u) \neq 0]$$

$$= \frac{1}{2} \cdot \operatorname{Pr}[\forall v \in N(u), \ell(v) \neq \ell(u) \mid \ell(u) \neq 0]$$

$$\operatorname{Pr}[\ell(v) = \ell(u) \mid \ell(u) \neq 0] = \operatorname{Pr}[\ell(v) = \ell(u) \mid \ell(u) \neq 0 \land \ell(v) = 0] \operatorname{Pr}[\ell(v) = 0]$$

$$+ \operatorname{Pr}[\ell(v) = \ell(u) \mid \ell(u) \neq 0 \land \ell(v) \neq 0] \operatorname{Pr}[\ell(v) \neq 0]$$

$$= \operatorname{Pr}[\ell(v) = \ell(u) \mid \ell(u) \neq 0 \land \ell(v) \neq 0] \operatorname{Pr}[\ell(v) \neq 0]$$

$$\leq \frac{1}{2} \operatorname{Pr}[\ell(v) = \ell(u) \mid \ell(u) \neq 0 \land \ell(v) \neq 0]$$

$$= \frac{1}{2} \frac{1}{\Delta + 1 - |C(u)|} .$$

 $\Pr[\exists v \in N(u) : \ell(v) = \ell(u) \mid \ell(u) \neq 0] \le (\Delta - |C(u)|) \frac{1}{2(\Delta + 1 - |C(u)|)} < \frac{1}{2}$

Analysis (continued)

Theorem (Barenboin & Elkin, 2013) The randomized algorithm performs (Δ +1)-coloring in O(log n) rounds, with high probability.

Proof Pr[u terminates at a given round] > 1/4

 $Pr[u \text{ has not terminated in } k \ln(n) \text{ rounds}] < (\frac{3}{4})^{k \ln(n)}$

 $Pr[some u has not terminated in k ln(n) rounds] < n (3/4)^k ln(n)$

Pick $k = 2/\ln(\frac{4}{3})$

 $Pr[all nodes have terminated in k ln(n) rounds] \ge 1 - 1/n$

Complexity of randomized $(\Delta+1)$ -coloring

Alon, Babai & Itai (1986) Luby (1986)	O(log n)
Harris, Schneider & Su (2016)	O(√log Δ)+2 ^{O(√loglog n)})

Locally Checkable Labelings (LCL)

Distributed Languages

- Configuration: (G,λ) where $\lambda : V(G) \rightarrow \{0,1\}^*$
- λ is called a *labeling*, and λ(u) is the *label* of node u
- A distributed language is a collection of configurations
- Examples:
 - $L = \{(G,\lambda) : G \text{ is planar}\}$
 - $L = \{(G,\lambda) : \lambda \text{ is a proper coloring of } G\}$
 - $L = \{(G,\lambda) : \lambda \text{ encodes a spanning tree of } G\}$

Distributed decision

A distributed algorithm A decides L if and only if:

- $(G,\lambda) \in L \Rightarrow \text{all nodes output } accept$
- (G,λ) ∉ L ⇒ at least one node output reject

The class LCL (locally checkable labelings)

Definition LCL is the class of distributed languages on graphs with

- bounded maximum degree $\Delta = O(1)$, and
- labels on bounded size k = O(1)

for which the membership to the language can be decided in O(1) rounds.

LCL Construction Task

L ∈ LCL

Task: Given G, construct λ such that $(G,\lambda) \in L$

Example: Given C_n construct a 3-coloring of C_n

Theorem (Naor & Stockmeyer, 1995)

Constant #rounds construction is TM-undecidable even for LCL

On the power of randomization

Theorem (Naor & Stockmeyer, 1995)

Let L ∈ LCL. If there exists a *randomized* Monte- Carlo construction algorithm for L running in O(1) rounds, then there exists a *deterministic* construction algorithm for L running in O(1) rounds.

Order-invariance: depend on the relative order of the IDs, not on their actual values.

Lemma If there exists a t-round construction algorithm for L, then there is t-round *order-invariant* construction algorithm for L.

Proof of the lemma (1/5)

Assumption IDs in \mathbb{N} (i.e., unbounded)

- Let X be a countably infinite set
- X^(r) = set of all subsets of X with size exactly r
- Let c: $X^{(r)} \rightarrow \{1,...,s\}$ be a "coloring" of the sets in $X^{(r)}$.

Theorem (Ramsey) There exists an infinite set $Y \subseteq X$ such that all sets in $Y^{(r)}$ are colored the same by c.

Proof (2/5)

- = collection of all graphs isomorphic to some ball B_G(v,t)

 of radius t, centered at some node v in some graph G with
 maximum degree Δ.
- β = #pairwise non-isomorphic balls in \mathcal{B} .
- Enumerate balls from 1 to β
- Let n_i = #vertices in the ith ball.
- Vertices of the ith ball can be ordered in n_i! different manners.
- Let $N = \sum_{i=1,...,\beta} n_i!$ ordered balls
- Enumerate these ordered balls in arbitrary order: B₁,...,B_N

Proof (3/5)

Let $\mathbb{N}=X_0\supseteq X_1\supseteq \cdots\supseteq X_j$ such that, for all $1\leq i\leq j$, the output of A at the center of B_i is the same for all possible IDs in B_i with values in X_i respecting the ordering of the nodes in B_i .

Define the coloring $c: X^{(r)} \to \{0,1\}^k$ where $r = |B_{j+1}|$, as follows

- 1. For $S \in X(r)$, assign r pairwise distinct identities to the nodes of B_{j+1} using the r values in S, and respecting the order in B_{j+1} .
- 2. Define c(S) as the output of A at the center of B_{i+1} .

By Ramsey's Theorem, there exists an infinite set $Y_j \subseteq X_j$ such that all r-element sets $S \in Y(r)$ are given the same color.

- Set $X_{j+1} = Y_j$.
- Exhaust all balls B_i , i = 1,...,N, and set $I = X_N$.

Proof (4/5)

I satisfies that, for every ball B_i the output of A at the center of B_i is the same for all ID assignments to the nodes of B_i with IDs taken from I and assigned to the nodes in respecting the order of B_i .

Order-invariant algorithm A'

- 1. Every v inspects its radius-t ball $B_G(v,t)$ in G. Let σ be the ordering of the nodes in $B_G(v,t)$ induced by their identities
- 2. Node v simulates \mathbf{A} by reassigning identities to the nodes of $B_G(v,t)$ using the $r = |B_G(v,t)|$ smallest values in \mathbf{I} , in order σ
- 3. Node v outputs what would have outputted A if nodes were given these identities.

Remark A' is well defined, and order-invariant.

Proof (5/5)

A' is correct:

The three regimes for LCL construction tasks

(in bounded-degree graphs)

Deterministic:

Randomized:

Local Decision

Decision classes

LD = class of distributed languages that can decided in O(1) rounds

PBLD (bounded probability local decision) = class of languages that can be probabilistically decided in O(1) rounds:

- $(G,\lambda) \in L \Rightarrow Pr[all nodes output accept] \ge \frac{2}{3}$
- (G,λ) ∉ L ⇒ Pr[at least one node output reject] ≥ ⅓

Generalization of Naor & Stockmeyer derandomization

Remark The previous proof for the order invariance lemma does not need L ∈ LCL

Theorem (Feuillley & F., 2015)

Let L ∈ BPLD. If there exists a *randomized* Monte-Carlo construction algorithm for L running in O(1) rounds, then there exists a *deterministic* construction algorithm for L running in O(1) rounds.

Deciding the presence of subgraphs

H is a *subgraph* of $G \iff V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$

G is H-free \iff H is not a subgraph of G

Remark Deciding H-freeness can be done in *diam*(H) rounds

What about the message length?

Theorem (Drucker, Kuhn & Oshman, 2014) Deciding C_4 -freeness required sending $\Omega(\sqrt{n})$ bits between some neighbors

Communication complexity

 $f: \{0,1\}^N \times \{0,1\}^N \rightarrow \{0,1\}$

Alice & Bob must compute f(a,b)

How many bits need to be exchanged between them?

Set-disjointness

- Ground set S of size N
- Alice gets A ⊆ S, and Bob gets B ⊆ S

$$f(A,B) = 1 \iff A \cap B = \emptyset$$

Theorem $CC(f) = \Omega(N)$, even using randomization.

Reduction from Set-Disjointness

Lemma There are C₄-free graphs G_n with n nodes

and $m=\Omega(n^{3/2})$ edges.

Let A and B as in set-disjointness (N=m)

• Alice keeps $e \in E(G_n)$ iff $e \in A$

• Bob keeps $e \in E(G_n)$ iff $e \in B$

 $\Omega(n^{3/2})/n = \Omega(\sqrt{n})$

The bound is tight

Algorithm 3 C_4 -detection executed by node u.

```
1: send ID(u) to all neighbors, and receive ID(v) from every neighbor v
2: send deg(u) to all neighbors, and receive deg(v) from every neighbor v
 3: S(u) \leftarrow \{\text{IDs of the min}\{\sqrt{2n}, \deg(u)\} \text{ neighbors with largest degrees}\}
4: send S(u) to all neighbors, and receive S(v) from every neighbor v
5: if \sum_{v \in N(u)} \deg(v) \ge 2n + 1 then
        output reject
7: else
        if \exists v_1, v_2 \in N(u), \exists w \in S(v_1) \cap S(v_2) : w \neq u \text{ and } v_1 \neq v_2 \text{ then}
8:
            output reject
9:
        else
10:
            output accept
11:
        end if
12:
13: end if
```

Local Verification and Beyond

Deciding Spanning Trees

ST = $\{(G,\lambda) : \lambda \text{ encodes a spanning tree of } G\}$ $\lambda(u) = ID(parent(u))$

- ST ∉ LD
- ST ∉ PBLD

Non-deterministic Local Decision (NLD)

 $L \in NLD$ iff there exists a distributed algorithm taking a pait label-certificate $(\lambda(u), c(u))$ at every node u such that:

- (G,λ) ∈ L ⇒ ∃ c : V(G) → {0,1}* for which all nodes
 output accept
- (G,λ) ∉ L ⇒ ∀ c : V(G) → {0,1}* at least one node outputs reject

Applications: Fault-tolerance, self-stabilization, etc.

Example: (Spanning) Tree

- Tree ∈ NLD
- Spanning tree ∉ NLD but has a proof-labeling scheme

Beyond NLD

NLD: $(G,\lambda) \in L \iff \exists c : V(G) \rightarrow \{0,1\}^* : A$ accepts

 $NLD = \Sigma_1$

 $\Pi_1: (G,\lambda) \in L \iff \forall c : V(G) \rightarrow \{0,1\}^* : \mathbf{A} \text{ accepts}$

 Σ_2 : $(G,\lambda) \in L \iff \exists c \forall c' : A accepts$

 Π_2 : $(G,\lambda) \in L \iff \forall c \exists c' : A accepts$

Local hierarchy: (Σ_k, Π_k) for $k \ge 0$ with $\Sigma_0 = \Pi_0 = LD$

Landscape of distributed decision

From Balliu, D'Angelo, F., Olivetti (2016)

Certificate size (upper bound)

Theorem (Korman, Kutten & Peleg) Every (TM-decidable) language with k-bit labels has a *proof-labeling scheme* (Σ_1) with certificates of size $\tilde{O}(n^2+nk)$ bits

- Certificate(u) = (M, \land, \mathbf{I})
- Verification algorithm checks consistency of certificates

Certificate size (Lower bound)

Theorem (Göös & Suomela) There exists a language with k-bit labels for which any proof-labeling scheme requires certificates of size $\Omega(n^2+nk)$ bits

```
Automorphism is a one-to-one label-preserving mapping f: V(G) \rightarrow V(G) such that: \{u,v\} \in E(G) \iff \{f(u),f(v)\} \in E(G)
```

 $L = \{(G,\lambda) : (G,\lambda) \text{ has a non-trivial automorphism}\}$

Non-trivial automorphism requires large certificates

There are ~ 2^{n²}
n-node graphs with no
non-trivial automorphisms

if o(n²)-bit certificates then consider (H₁,H'₁) and (H₂,H'₂) with the same certificate at u

Consider (H₁,H'₂): no nodes see any difference!

O(log n)-bit certificates

[Feuilloley, F., Hirvonen]

There are languages outside the local hierarchy $(\Sigma_k, \Pi_k)_{k\geq 0}$

'Last for-all' quantifier is of no help:

$$\Sigma_{2k} = \Sigma_{2k-1}$$
 and $\Pi_{2k+1} = \Pi_{2k}$

Hierarchy: $\Lambda_{2k} = \Pi_{2k}$ and $\Lambda_{2k+1} = \Sigma_{2k+1}$

- Separation: $\Lambda_1 \neq \Lambda_0$; $\Lambda_2 \neq \Lambda_1$; $\Lambda_3 ? \Lambda_2$
- Collapsing: if $\Lambda_{k+1} \neq \Lambda_k$ then hierarchy collapses at Λ_k

Conclusion

Research directions

- Characterizing locality
- Interplay between decision and construction
- Incorporating errors, selfishness, and misbehaviors
- Many core-problems, like (Δ+1)-coloring, MIS, etc. are still open
- Incorporating the access to non-classical ressources, e.g., entangled particules

Thank you!