| ocal Distributed
Computing

Pierre Fraigniaud

INSTITUT

DE RECHERCHE

EN INFORMATIQUE
FONDAMENTALE

Ecole de Printemps en Informatique Théorique
Porquerolles 14-19 mai 2017

PA R ! giversité

DIDEROT

PPPPPP

| OCAL model

An abstract model capturing the essence of locality:

* Processors connected by a network G=(V,E)
e Each processor (i.e., each node) has an Identity

e Synchronous model (sequence of rounds)

All processor start simultaneously

e No failures — all processors

Complexity as #rounds

At each round, each node:
- Sends messages to neighbors
- Receives messages from neighbors

> Computes

#rounds measures locality

t—roundl A'Igmo.ri‘t'hm A:

L0241 striag Ve

] data = peov Dysel

cel
;PCL&.,\t ’th““ .
& - Dav T*‘v"‘\nx.'.t
00;V"tnocxcw“w“‘?l“ '
ca::(;naola.ﬂ: Lreline
x:ctutm . (.'\.‘.(.s
- 50‘\' d.t...'
tuo:kSt ean ac;dmu‘-
\ re = -
int Da q laat Ry
cring crin M A
] ASC > ru.ebi e\® "
o e
onsol W oe g,aa" e
- ile‘ U - con“ O(\Y‘a‘;,c"’.'.‘
lnp an\\‘ r“st..-: "-c;"
: e mu“.“yu;.hdl
' “d“c“ ;Y‘.‘l -l

Algorithm B:

Gather all data at distance at
most t from me

Individually simulate the t
rounds of A

A Case Study:
Distributed Coloring

3-coloring cycles

S5-cvele
N\

e Symmetry-breaking task
* Application to frequency assignment in radio networks

J-cvele

Instances: same graph, but
different |ID-assignments

2 5 3 2
3< >1 1< >6
6 4 5 4

Cole & Vishkin (1986)
@ o o

Current colors: 101001100101110 010001010101110

b0 = bit-value
K = bit-position

new color = (k,b) = 2k+b (K',b")

Complexity of Cole-Vishkin

* current colors on B bits
* new colorson | logB | + 1 bits
* lterated logarithms:

> logMx = log x
> logk+1) x = log logk x

e log*x=min{k:logk x < 1}

Cole-Vishkin: O(log*n) rounds

Linial Lower Bound (1992)

2 5
Distance-1 neighborhoods:
(2,5,1) (4,6,1) (5,1,4)
3 1
(2,5,1) consistent with (5,1,4)
(2,5,1) not consistent with (4,6,1)
6 4

Configuration graph Gn,1
- Nodes = distance-1 neighborhood
- Edges = between consistent neighborhoods

Configuration graph Gn;

Definition
* node = (Xo X1 o0 Xt-1 Xt Xt+1 Xt+2 ... th)

= a view of x: at distance t in some cycle

* edge = {(Xo oo Xt X Xt .o Xot), (X1 Lo Xt Xt Xte2 ... Xot y)}
Chromatic number X(G) = minimum #colors to proper color G

Lemma Algorithm in t-rounds for k-coloring Cn = X(Gnt) <k

2-coloring Cox

Theorem 2-coloring Cox requires at least k-1 rounds

Proof If i<k-2 then there exists an odd-cycle in Gok

o (X0X1 ... X2k-4)

° (X1 sz-4y)

* (X2...Xok4YZ)

o (X3...X2k-4YZX0)

* (X4...Xok-4YZX0X1) (2k-1)-cycle

* (Xok-4YZX0 ... X2k-7)
* (YZX0... X2k-6)
* (ZXo... X2k-5) N

3-coloring Cy

Theorem 3-coloring Cn requires Q(log*n) rounds

Proof Show that if t = o(log™n) then X(Gnt) = w(1) B

(A+1)-coloring

A = maximum degree O

PSS
For every graph G, X(G) < A+1

Greedily Constructlble

Complexity of (A+1)-coloring
as a function of n

Theorem (Panconesi & Srinivasan, 1995)
(A+1)-coloring algorithm in 20log n) rounds

Theorem (Linial, 1992)

(A+1)-coloring requires Q(log*™n) rounds

Complexity of (A+1)-coloring
as a function of n and A

Linial (1992) O(log*n + A2)

cf. also Goldberg, Plotkin and Shannon (1988)

Q(A log A)
for iterative algorithms

Szegedy & Vishwanathan (1993)

Kuhn & Wattenhofer (2006) O(log’n + A log 4)

iterative
Barenboim & Elkin (2009) .
Kuhn (2009) Ollog™n +4)
Barenboim (2015) O(log™n + A3/4)

F., Heinrich & Kosowski (2016) O(log*n + \/A)

Randomized algorithm
for (A+1)-coloring

Algorithme distribué de (A + 1)-coloration pour un sommet u
début
c(u) « L
C(u) <0
tant que c(u) = L faire
choisir une couleur E()e{0,1,...,A+1}\ C(u) avec
Pl =0 = 5, e PE) — = Q(A—l—li\C(u)D pour £ € {1,..., A+1}\C(u)
envoyer ¢(u) aux voisins et recevoir la couleur ¢(v) de chaque voisin v
i/l(u) # 0 et l(v) # £(u) pour tout voisin v alors c(u) < ¢(u) sinon c(u) < L
envoyer c(u) aux voisins et recevoir la couleur c¢(v) de chaque voisin v
ajouter & C'(u) les couleurs des voisins v tels que ¢(v) # L

fin.

Analysis

Prll(u) # 0 et aucun v € N (u) satisfait £(v) = £(u)]
Pr[Vv € N(u),£(v) # €(u) | £(u) # O] - Pr[f(u) # 0]
_ % Prlve € N(u), £(v) £ £(u) | £(u) 2 0]

Pr|u termine]

Prif(v) = £(u) | £(u) # 0] = Pr{f(v) = £(u) | £(u) # 0 A L(v) = 0] Prlé(v) = 0]
+ Prl(v) = £(u) | £(u) # 0 A L(v) # 0] Prlt(v) # 0]
t(u)

Pr[f(v) = £(u) | £(u) # 0 A £(v) % 0] Prlf(v) # O
> Pr{l(v) = £(u) | {(u) # 0 A £(v) # 0]

1 1
2AT1—[C(u)

VAN|

1

Pr[Jv € N(u) : £(v) = £(u) | £(u) # 0] < (A - ’C(“)DQ(A +1—|C(u)])

<1
2

Analysis (continued)

Theorem (Barenboin & Elkin, 2013) The randomized algorithm
performs (A+1)-coloring in O(log n) rounds, with high probability.

Proof Pr[uterminates at a given round] > V4

Pr[u has not terminated in k In(n) rounds] < (34)<""

Pr[some u has not terminated in k In(n) rounds] < n (34)<""
Pick k = 2/In(%s)

Prlall nodes have terminated in k In(n) rounds] > 1 - 1/n [

Complexity of randomized
(A+1)-coloring

Alon, Babai & Itai (1986)

Luby (1986) Nleg)

Harris, Schneider & Su (2016) O(y/log A)+20W/oglog n))

Locally Checkable
Labelings (LCL)

Distributed Languages

Configuration: (G,\) where A : V(G) — {0,1}*
A is called a labeling, and A(u) is the label of node u
A distributed language is a collection of configurations

Examples:
- L={(G,A) : Gis planar}
- L={(G,\) : Nis a proper coloring of G}
- L ={(G,\) : A encodes a spanning tree of G}

Distributed decision

A distributed algorithm A decides L it and only if:

« (G,A\) € L = all nodes output accept

 (G,A\) g L = at least one node output reject

The class LCL

(locally checkable labelings)

Definition LCL is the class of distributed languages
on graphs with

> bounded maximum degree A = O(1), and
- labels on bounded size k = O(1)

for which the membership to the language can be
decided in O(1) rounds.

| CL Construction Task

L e LCL
Task: Given G, construct A such that (G,A) € L

Example: Given Cy construct a 3-coloring of Cy

Theorem (Naor & Stockmeyer, 1995)

Constant #rounds construction is TM-undecidable
even for LCL

On the power of
randomization

Theorem (Naor & Stockmeyer, 1995)

Let L € LCL. If there exists a randomized Monte- Carlo
construction algorithm for L running in O(1) rounds, then
there exists a deterministic construction algorithm for L
running in O(1) rounds.

Order-invariance: depend on the relative order of the IDs,
not on their actual values.

Lemma If there exists a t-round construction algorithm for
L, then there Is t-round order-invariant construction
algorithm for L.

Proof of the lemma (1/5)

Assumption IDs in N (i.e., unbounded)

* Let X be a countably infinite set

XN = set of all subsets of X with size exactly r
e Letc: XN —={1 ... s} bea “coloring” of the sets in X",

Theorem (Ramsey) There exists an infinite set Y € X
such that all sets in Y(") are colored the same by c.

Proof (2/5)

9B = collection of all graphs isomorphic to some ball Bg(v,t)

of radius t, centered at some node v in some graph G with
maximum degree A.

3 = #pairwise non-isomorphic balls in A.

Enumerate balls from 1 to [3
Let n; = #vertices in the it" ball.
Vertices of the it" ball can be ordered in n;! different manners.

Let N = 2i=1 . gni! ordered balls

Enumerate these ordered balls in arbitrary order: Bq,...,Bn

Proof (3/5)

Let N=Xp 2X1 2---2X; such that, for all 1 <i <j, the output of A at the

center of Bj is the same for all possible IDs in B; with values in X;
respecting the ordering of the nodes in B;.

Define the coloring ¢ : X' = {0,1)* where r = |B;,4|, as follows

1. For S € X(r), assign r pairwise distinct identities to the nodes
of Bj+1 using the r values in S, and respecting the order in By, 1.

2. Define c(S) as the output of A at the center of By, 1.

By Ramsey’s Theorem, there exists an infinite set Y| € Xj such that all
r-element sets S € Y(r) are given the same color.

e Set Xj+1 =YJ'.
* Exhaustall balls B;,i=1,....N, and set I = Xy\.

Proof (4/5)

I satisfies that, for every ball B; the output of A at the center of B; is the

same for all ID assignments to the nodes of B; with IDs taken from I and
assigned to the nodes in respecting the order of B;.

Order-invariant algorithm A’

1. Every v inspects its radius-t ball Bg(v,t) in G. Let o be the ordering of the
nodes in Bg(v,t) induced by their identities

2. Node v simulates A by reassigning identities to the nodes of Bg(V,1)
using the r = |Bg(v,t)| smallest values in I, in order o

3. Node v outputs what would have outputted A if nodes were given these
identities.

Remark A’ is well defined, and order-invariant.

Proof (5/5

A’ Is correct:

Graph G U2
23

////06—_\\\\\\

U1 ;@ Uis U12,

e ! e o

17 ‘\ /

The three regimes for

| CL construction tasks
(in bounded-degree graphs)

Deterministic:

> o> o

Randomized:

Ol ST
y RS R

Local Decision

Decision classes

LD = class of distributed languages that can decided
in O(1) rounds

PBLD (bounded probability local decision) = class of

languages that can be probabilistically decided in O(1)
rounds:

 (G,A\) e L= Prlall nodes output accept] > 73

e (G,\) ¢ L = Pr[at least one node output reject] > %3

Generalization of Naor &
Stockmeyer derandomization

Remark The previous proof for the order invariance
lemma does not need L € LCL

Theorem (Feuillley & F.,, 2015)

Let L € BPLD. If there exists a randomized Monte-
Carlo construction algorithm for L running in O(1)
rounds, then there exists a deterministic
construction algorithm for L running in O(1) rounds.

Deciding the presence
of subgraphs

His a subgraph of G < V(H) ¢ V(G) and E(H) ¢ E(G)

G Is H-free <= H is not a subgraph of G

Remark Deciding H-freeness can be done in diam(H)
rounds

What about the message length?

Theorem (Drucker, Kuhn & Oshman, 2014) Deciding
Cs-freeness required sending Q(y/n) bits between some
neighbors

Communication complexity

f:{0,1INx{0,1]N = {0,1}

— Bob

ae{0,1N b e {0,1N
Alice & Bob must compute f(a,b)

How many bits need to be exchanged between them?

Set-disjointness

e (Ground set S of size N

 AlicegetsAC S, andBob getsB c S
f(AB)=1<—<= AnB =28

Theorem CC(f) = Q(N), even using randomization.

Reduction from
Set-Disjointness

Lemma There are Cs-free graphs Gn with n nodes

and m=0(n>%) edges. Alice’s cop Bob’s copy
Let A and B as in of Gn of G

set-disjointness (N=m) 2 .

- Alice keeps e € E(Gp)
iff e € A

- Bob keeps e € E(Gp)
iffeeB

Q(nd2)/n = Q(v/n)

The bound is tight

Algorithm 3 Cj;-detection executed by node wu.

— e
W 2

send ID(u) to all neighbors, and receive ID(v) from every neighbor v
send deg(u) to all neighbors, and receive deg(v) from every neighbor v
S(u) < {IDs of the min{v/2n, deg(u)} neighbors with largest degrees}
send S(u) to all neighbors, and receive S(v) from every neighbor v
if > ,en(w) de8(v) = 2n+ 1 then
output reject
else
if Jvy,v9 € N(u),3w € S(v1) N S(v2) : w # u and v1 # vy then
output reject
else
output accept
end if
: end if

Local Verification
and Beyond

Deciding Spanning Trees

ST ={(G,\) : A encodes a spanning tree of G}
Au) = ID(parent(u))

- ST ¢ LD
- ST ¢ PBLD

Non-deterministic
Local Decision (NLD)

L e NLD iff there exists a distributed algorithm taking a
pait label-certificate (A(u),c(u)) at every node u such that:

e (GANelL=13c:V(G)—{0,1}* for which all nodes

output accept

e (GAN)gL=vwvc:V(G) —{0,1}" atleast one node

outputs reject

Applications: Fault-tolerance, self-stabilization, etc.

Example: (Spanning) Tree

1 .
o certificates may
o depend on IDs
> Tree e NLD

o Spanning tree ¢ NLD but has a proof-labeling scheme

Beyond NLD

NLD: (GA) el < 3c:V(G) —{0,1}": A accepts

NLD = 24

[11: (GAN) el <<= vc:VG)—{0,1}*: Aaccepts
22 (GAN) el < 3cvc : Aaccepts
[1o: (GAN) el«< vcac : Aaccepts

Local hierarchy: (2x,['k) for k>0 with 20=Tlo= LD

L andscape of
distributed decision

All = T
MISS

NLD = Xxio¢ EXTS co-NLD

From Balliu, D’Angelo, F., Olivetti (2016)

Certificate size
(upper bound)

Theorem (Korman, Kutten & Peleg) Every (TM-decidable)
language with k-bit labels has a proof-labeling scheme
(21) with certificates of size O(n2+nk) bits

- Certificate(u) = (M,A\, 1)

- Verification algorithm checks consistency of
certificates

Certificate size
(Lower bound)

Theorem (G6ds & Suomela) There exists a language
with k-bit labels for which any proot-labeling scheme
requires certificates of size ()(n2+nk) bits

Automorphism is a one-to-one label-preserving

mapping f: V(G) = V(G) such that:
{uvieE(G) < {f(u),f(v)}eE(G)

L ={(G,\) : (G,\) has a non-trivial automorphismj

Non-trivial automorphism
requires large certificates

G=(H,H’)
U n2
o-0-0-00 There are ~ 2
n-node graphs with no
non-trivial automorphisms
H H

It o(n2)-bit certificates then consider
(H1,H’1) and (H2,H’2) with the same
certificate at u

Consider (H1,H’2) : no nodes see any difference!

O(log n)-bit certificates

[Feuilloley, F., Hirvonen]

There are languages outside the local hierarchy (2k,I k)k=0
‘Last for-all’ quantifier is of no help:
2ok = 22k-1 and [oxs1 = [o
Hierarchy: Aok = ok and Aokt = 22k+1
o Separation: A1=No ; No=/N\1 ;0 N3?/N\o

o Collapsing: if Ak+1 # Ak then hierarchy collapses at /\«

Conclusion

Research directions

Characterizing locality
Interplay between decision and construction
Incorporating errors, selfishness, and misbehaviors

Many core-problems, like (A+1)-coloring, MIS, etc.
are still open

Incorporating the access to non-classical
ressources, e.g., entangled particules

Thank You!

