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Lower and upper bounds
§  If something can be computed, what are 

the costs?
§  Complexity metrics: 

ü time (e.g., number of steps)
ü space (number of shared memory locations)
ü typically asymptotic wrt n (system size) 

§  Lower bounds Ω(f(n)) – required cost
§  Upper bounds O(f(n)) – exhibited cost
§  Tight lower bounds: f(n)=g(n)



This class
§  Covering/valency arguments

ü Time/space complexity of perturbable objects
ü Space complexity of obstruction-free consensus

§  Information theory: encoder/decoder
ü Total work complexity of mutual exclusion

A Tight Space Bound for Consensus
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ABSTRACT
Existing n-process randomized wait-free (and obstruction-
free) consensus protocols from registers all use at least n
registers. In 1992, it was proved that such protocols must
use ⌦(

p
n) registers. Recently, this was improved to ⌦(n)

registers in the anonymous setting, where processes do not
have identifiers. Closing the gap in the general case, how-
ever, remained an open problem. We resolve this problem
by proving that every randomized wait-free (or obstruction-
free) consensus protocol for n processes must use at least
n� 1 registers.

CCS Concepts
• Theory of computation ! Concurrency

Keywords
Shared Memory Model, Consensus, Space Complexity

1. INTRODUCTION
Perhaps the most studied problem in the theory of dis-

tributed computing is the consensus problem, which requires
n processes, each with an input value, to agree on a common
output value. An attractive application of the consensus
problem lies in implementing shared objects, such as stacks
or queues. In particular, if there is a wait-free protocol for
consensus, where each process decides in a finite number
of its own steps, regardless of the speed or failure of other
processes, then it is also possible to implement any shared
object in a wait-free manner [Her91].

It is impossible to deterministcally solve wait-free consen-
sus in an asynchronous shared memory system, where pro-
cesses communicate by reading and writing shared memory
locations, called registers [LAA87]. However, it is possible
using randomization [AC08, AH90, AW96, CIL94]. Asymp-
totically tight bounds are known for the total number of
steps taken by all processes [AC08].
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On the other hand, tight bounds were not known for the
space complexity of this problem. In 1992, Fich, Herlihy,
and Shavit proved a space lower bound of ⌦(

p
n) regis-

ters [FHS98]. All existing protocols use at least n registers
[AH90, AW96]. Closing this gap has been a longstanding
open problem.

Recently, we proved matching upper and lower bounds of
n registers for a restricted class of protocols, where processes
are anonymous (i.e. they have no identifiers) and memory-
less (i.e. they do not use local memory) [Zhu15]. At the same
time, using very interesting, di↵erent techniques, Gelashvili
proved a lower bound of ⌦(n) registers for protocols with
anonymous processes, without the memoryless assumption
[Gel15]. Since there are anonymous protocols that use n
registers [BRS15, Zhu15], the bound is tight. Thus, the
anonymous case of the problem is resolved to within a con-
stant factor.

The general case of the problem, however, remained open.
There was even evidence suggesting the possibility of a pro-
tocol using O(

p
n) space: Weak leader election is a closely

related, but provably weaker, problem. In this problem,
processes must choose exactly one leader, but each process
only needs to know whether it has been chosen. An inno-
vative protocol for weak leader election, using O(

p
n) regis-

ters, was obtained [GHHW13] a few years ago. Later, the
same authors improved this to O(log n), which is optimal
[GHHW15].

Our contribution.
We resolve the general case of the problem by proving that

any consensus protocol for n processes in an asynchronous
system uses at least n � 1 registers. Our lower bound uses
a more refined notion of valency (introduced in [FLP85])
combined with a covering argument (introduced in [BL93]).
As in [FHS98, Gel15, Zhu15], the bound holds even if the
registers are of unbounded size.

The lower bound shows that consensus is, fundamentally,
a communication problem. In particular, having large reg-
isters cannot compensate for having too few registers. Since
there is a memoryless anonymous protocol that uses n reg-
isters [Zhu15], having identifiers and large amounts of local
memory also cannot compensate for having too few registers.

A nice feature of our proof is that it is simple and uses very
little machinery. This is a bit surprising given the di�culty
of the ⌦(

p
n) lower bound and the subtlety of the ⌦(n) lower

bound for the anonymous case.
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AbstractWe prove an �(n log n) lower bound on the number of

non-busywaiting memory accesses by any determinis-

tic algorithm solving n process mutual exclusion that

communicates via shared registers. The cost of the

algorithm is measured in the state change cost model,

a variation of the cache coherent model. Our bound

is tight in this model. We introduce a novel informa-

tion theoretic proof technique. We first establish a

lower bound on the information needed by processes

to solve mutual exclusion. Then we relate the amount

of information processes can acquire through shared

memory accesses to the cost they incur. We believe

our proof technique is flexible and intuitive, and may

be applied to a variety of other problems and system

models.

1
Introduction

In the mutual exclusion (mutex ) problem, a set of

processes communicating via shared memory access

a shared resource, with the requirement that at most

one process can access the resource at any time. Mu-

tual exclusion is a fundamental primitive in many dis-

tributed algorithms, and is also a foundational prob-

lem in the theory of distributed computing. Numer-

ous algorithms for solving the problem in a variety

of cost models and hardware architectures have been

proposed over the past four decades. In addition,

a number of recent works have focused on proving

lower bounds for the cost of mutual exclusion. The

cost of a mutex algorithm may be measured in terms

of the number of memory accesses the algorithm per-

forms, the number of shared variables it accesses, or

other measures reflective of the performance of the

algorithm in a multicomputing environment. In this

paper, we study the cost of a mutex algorithm us-

ing the state change cost model, a simplification of

the standard cache coherent model, in which an algo-

rithm is charged only for performing shared memory

operations causing a process to change its state. Let

a canonical execution consist of n di�erent processes,

each of which enters the critical section exactly once.

We prove that any deterministic mutex algorithm us-

ing registers must incur a cost of �(n log n) in some

canonical execution. This lower bound is tight, as the

algorithm of Yang and Anderson [13] has O(n log n)

cost in all canonical executions with our cost mea-

sure. To prove the result, we introduce a novel tech-

nique which is information theoretic in nature. We

first argue that in each canonical execution, processes

need to cumulatively acquire a certain amount of in-

formation. We then relate the amount of information

processes can obtain by accessing shared memory to

the cost of those accesses, to obtain a lower bound on

the cost of the mutex algorithm. Our technique can

be extended to show the same lower bound when pro-

cesses are allowed access to comparison-based shared

memory objects, in addition to registers. Further-

more, we believe that with some modifications, we

can use the techniques to prove an �(n log n) lower

bound on the cost of some canonical execution in the

cache coherent model. A report on these results is in

preparation.We now give a brief description of our proof tech-

nique. Intuitively, in order for n processes to all en-

ter the critical section without colliding, the “visi-

bility graph” of the processes, formed by adding a

directed edge from each process that “sees” another

process, must contain a directed chain on all n pro-

cesses. Indeed, if there exist two processes, neither

of which sees the other, then an adversary can make

both processes enter the critical section at the same

time. To form a directed visibility chain, the pro-

cesses must all together collect enough information

to compute a permutation � � Sn . Such a permu-

tation takes �(n log n) bits to specify. We show that

in some canonical executions, each time the processes

perform some memory accesses with cost C, they gain
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Part I

Covering



The idea
Processes need to communicate to 
get their work done
Several processes may cover the 
same location
§  An operation must write to enough 

distinct locations before terminating
§  Otherwise, the operation is not 

visible



Covering and block writes

¯ -“block write” 
on B1,…,Br  by
p1,…,pr

C

C®¯ 

C¯° 

°	-	pn runs solo and 
completes an
operation

B1,…,Br  are 
“covered” by
p1,…,pr

C C®¯° 

C¯ 

“block write”
B1,…,Br  by
p1,…,pr

C® 

pr+1 runs solo

To be « seen » by pn
pr+1 must write outside 

{B1,…,Br}

pn runs solo



I.1: Perturbable complexity	

TIME AND SPACE LOWER BOUNDS FOR NONBLOCKING
IMPLEMENTATIONS∗

PRASAD JAYANTI† , KING TAN† , AND SAM TOUEG‡

SIAM J. COMPUT. c⃝ 2000 Society for Industrial and Applied Mathematics
Vol. 30, No. 2, pp. 438–456

Abstract. We show the following time and space complexity lower bounds. Let I be any
randomized nonblocking n-process implementation of any object in set A from any combination of
objects in set B, where A = {increment, fetch&add, modulo k counter (for any k ≥ 2n), LL/SC bit,
k-valued compare&swap (for any k ≥ n), single-writer snapshot}, and B = {resettable consensus}
∪ {historyless objects such as registers and swap registers}. The space complexity of I is at least
n− 1. Moreover, if I is deterministic, both its time and space complexity are at least n− 1. These
lower bounds hold even if objects used in the implementation are of unbounded size.

This improves on some of the Ω(
√
n) space complexity lower bounds of Fich, Herlihy, and Shavit

[Proceedings of the 12th Annual ACM Symposium on Principles of Distributed Computing, Ithaca,
NY, 1993, pp. 241–249; J. Assoc. Comput. Mach., 45 (1998), pp. 843–862]. It also shows the near
optimality of some known wait-free implementations in terms of space complexity.

Key words. asynchronous shared memory algorithms, nonblocking, wait-free, synchronization,
randomized shared object implementations, space complexity, time complexity, lower bounds

AMS subject classifications. 68Q17, 68W15

PII. S0097539797317299

1. Introduction. Nonblocking and wait-free implementations of shared objects
have been the subject of much research. While there have been several results on when
such implementations are feasible and when they are not, results establishing their
intrinsic time and space requirements are relatively scarce, especially for randomized
implementations. In this paper, we present a technique by which one can obtain a
linear lower bound on the space complexity of several randomized nonblocking imple-
mentations. The technique also yields a linear lower bound on the time complexity of
several deterministic nonblocking implementations.

Specifically, our results are as follows. Let I be any randomized nonblocking
n-process implementation of any object in set A from any combination of objects
in set B, where A = {increment, fetch&add, modulo k counter (for any k ≥ 2n),
LL/SC bit, k-valued compare&swap (for any k ≥ n), single-writer snapshot}, and
B = {resettable consensus} ∪ {historyless objects}. (Roughly speaking, an object is
historyless if each of its operations either does not affect the state of the object or
overwrites the previously applied operations. Examples include registers, test and set
objects, and swap registers.) The space complexity of I is at least n− 1. Moreover, if
I is deterministic, both its time and space complexity are at least n− 1. These lower
bounds hold even if objects used in the implementation are of unbounded size.

Some of the results in this paper improve known lower bounds, while others
are completely new. In particular, Fich, Herlihy, and Shavit proved a Ω(

√
n) space

complexity lower bound for a randomized nonblocking n-process implementation of

∗Received by the editors February 28, 1997; accepted for publication (in revised form) September
22, 1999; published electronically June 3, 2000. This work was partially supported by NSF grants
CCR-9402894, CCR-9711403, and CCR-9410421, DARPA/NASA Ames grant NAG-2-593, and a
Dartmouth College Startup grant.

http://www.siam.org/journals/sicomp/30-2/31729.html
†Sudikoff Laboratory for Computer Science, Dartmouth College, Hanover, NH 03755 (prasad@

cs.dartmouth.edu, kytan@cs.dartmouth.edu).
‡Department of Computer Science, Cornell University, Upson Hall, Ithaca, NY 14853 (sam@

cs.cornell.edu).
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The result (simplified)
Any linearizable obstruction-freedom 
implementation of a counter from read-
write registers has 
§   ¸ n-1 space complexity
§   ¸ n-1 solo step complexity

Space and (solo-step) time complexity 
is £(n) [Attiya et al., JACM’09] 



Obstruction-freedom

p1 

p2 

p3 

An operation is guaranteed to return 
if it runs in isolation (no step 
contention) for sufficiently long

solo step complexity

OF read-write implementations: 
consensus, CAS, counters,…



Model assumptions
§  Processes ¦={p1,…,pn} communicate via 

reading and writing to shared base objects 
§  Every process is assigned a deterministic 

(counter) algorithm 
§  Every process runs inc() operations, one 

after another
ü  The state of the system is determined by a 

schedule --- a sequence in ¦*



Induction hypothesis
For all k=0,…,n-1, there exist schedules ®k, 
¯k,°k such that:

 k=n-1 - we are done!  

®k

“block write” to
B1,…,Bk
by p1,...,pk

¯k °k

by pn: only B1,…,Bk 
are accessed
(at most one inc()) 

Any ¸k
by {pk+1,…,pn-1}

by {p1,…,pn-1}

pn does not 
notice ¸

k



Base case

§  k=0
§   ®0=¯0=°k=² (empty schedules)

Suppose the hypothesis holds for
 0· k<n-1



Induction step: ¸k can “perturb” pn

®k

“block write” to
B1,…,Bk

¯k ° by pn

only B1,…,Bk 
are accessed 

¸k

Claim: pn must access some Bk+1 outside {B1,...,Bk} before returning in ° 

Suppose not: pn returns v only 
accessing B1,...,Bk	

Processes in
{pk+1,…,pn-1}



pn can be “perturbed” by ¸k

®k

“block write” to
B1,…,Bk

¯k ° by pn

only B1,…,Bk 
are accessed 

¸k

Squeeze v+1 
inc() ops 
by pk+1

return v

§   ®k+1 - extend ®k until pk+1 is about to write 
to some Bk+1 outside {B1,...,Bk}  

§  ¯k=p1,...,pk+1
§   °k+1 - extend °k until pn accesses Bk+1



Perturbable objects
There exists an assignment of operations such that 
for every schedule ®¯° such that
§   ® and ¯ do not contain pn
§  ¯ is by a proper subset of {p1...pn-1}
§   ° 2 pn* and pn runs exactly one operation in ®¯°
§  For some pl2{p1,...,pn-1}-PSET(¯), 9 ¸ 2 pl*: pn 

does not complete its operation or returns a 
different response in ®¸¯® and ®¯® 

 Ω(n) time/space hold for randomized 
implementations of perturbable objects (CAS, 

counters, atomic snapshots) 
from historyless primitives (read-write, swap, …)



I.2: Space complexity of 
consensus: valence and 

covering

A Tight Space Bound for Consensus

Leqi Zhu

Department of Computer Science

University of Toronto

Canada

lezhu@cs.toronto.edu

ABSTRACT
Existing n-process randomized wait-free (and obstruction-
free) consensus protocols from registers all use at least n
registers. In 1992, it was proved that such protocols must
use ⌦(

p
n) registers. Recently, this was improved to ⌦(n)

registers in the anonymous setting, where processes do not
have identifiers. Closing the gap in the general case, how-
ever, remained an open problem. We resolve this problem
by proving that every randomized wait-free (or obstruction-
free) consensus protocol for n processes must use at least
n� 1 registers.

CCS Concepts
• Theory of computation ! Concurrency

Keywords
Shared Memory Model, Consensus, Space Complexity

1. INTRODUCTION
Perhaps the most studied problem in the theory of dis-

tributed computing is the consensus problem, which requires
n processes, each with an input value, to agree on a common
output value. An attractive application of the consensus
problem lies in implementing shared objects, such as stacks
or queues. In particular, if there is a wait-free protocol for
consensus, where each process decides in a finite number
of its own steps, regardless of the speed or failure of other
processes, then it is also possible to implement any shared
object in a wait-free manner [Her91].

It is impossible to deterministcally solve wait-free consen-
sus in an asynchronous shared memory system, where pro-
cesses communicate by reading and writing shared memory
locations, called registers [LAA87]. However, it is possible
using randomization [AC08, AH90, AW96, CIL94]. Asymp-
totically tight bounds are known for the total number of
steps taken by all processes [AC08].
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On the other hand, tight bounds were not known for the
space complexity of this problem. In 1992, Fich, Herlihy,
and Shavit proved a space lower bound of ⌦(

p
n) regis-

ters [FHS98]. All existing protocols use at least n registers
[AH90, AW96]. Closing this gap has been a longstanding
open problem.
Recently, we proved matching upper and lower bounds of

n registers for a restricted class of protocols, where processes
are anonymous (i.e. they have no identifiers) and memory-
less (i.e. they do not use local memory) [Zhu15]. At the same
time, using very interesting, di↵erent techniques, Gelashvili
proved a lower bound of ⌦(n) registers for protocols with
anonymous processes, without the memoryless assumption
[Gel15]. Since there are anonymous protocols that use n
registers [BRS15, Zhu15], the bound is tight. Thus, the
anonymous case of the problem is resolved to within a con-
stant factor.
The general case of the problem, however, remained open.

There was even evidence suggesting the possibility of a pro-
tocol using O(

p
n) space: Weak leader election is a closely

related, but provably weaker, problem. In this problem,
processes must choose exactly one leader, but each process
only needs to know whether it has been chosen. An inno-
vative protocol for weak leader election, using O(

p
n) regis-

ters, was obtained [GHHW13] a few years ago. Later, the
same authors improved this to O(log n), which is optimal
[GHHW15].

Our contribution.
We resolve the general case of the problem by proving that

any consensus protocol for n processes in an asynchronous
system uses at least n � 1 registers. Our lower bound uses
a more refined notion of valency (introduced in [FLP85])
combined with a covering argument (introduced in [BL93]).
As in [FHS98, Gel15, Zhu15], the bound holds even if the
registers are of unbounded size.
The lower bound shows that consensus is, fundamentally,

a communication problem. In particular, having large reg-
isters cannot compensate for having too few registers. Since
there is a memoryless anonymous protocol that uses n reg-
isters [Zhu15], having identifiers and large amounts of local
memory also cannot compensate for having too few registers.
A nice feature of our proof is that it is simple and uses very

little machinery. This is a bit surprising given the di�culty
of the ⌦(

p
n) lower bound and the subtlety of the ⌦(n) lower

bound for the anonymous case.



The result
Space complexity of any obstruction-
free binary consensus implementation 
is n-1
£(n) space complexity [AGHK09,BRS15]

(applies to randomized consensus too)
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Refined model assumptions
§  Processes ¦={p1,…,pn} communicate via 

reading and writing to shared base objects
§  Every process is assigned a deterministic 

algorithm
§  Configuration

ü  Local state for each process
ü  State of each register

§  Initial configuration
ü  Input assignment
ü  Registers in initial states

§  Configuration C and schedule ® 2 ¦* define a 
configuration C® 



Valence of a configuration

C is v-valent (for v in {0,1}) if v is decided in every 
extension of C

C is bivalent if both 0 and 1 can be decided in extensions 
of C  

§  Every configuration is 0-valent,  or 1-valent, or bivalent.
§  If some process decides v in C, then C is v-valent
§  No process can decide in a bivalent run



Refined valence of a configuration
Let C be a configuration and Pµ¦  

P is v-valent from C (for v in {0,1}) if v is decided in every P-only 
extension C®

P is bivalent from C if both 0 and 1 can be decided in P-only 
extensions of C  

For all C and non-empty P:
§  P is 0-valent,  or 1-valent, or bivalent from C
§  If P is v-valent in C, then any non-empty P’µ P is v-valent 

from C
 



Valence: more properties
Lemma 1 If P (|P|¸ 3) is bivalent from C, then there exists a P-

only schedule ϕ and z2 P such that P-{z} is bivalent from Cϕ

Proof: Take z1, z22 P, let Q1=P-{z1} and Q2=P-{z2}, Q1Å Q2≠; 

A configuration of ⇧ consists of the state of each process
and the contents of each register. An initial configuration is
determined by the input value of each process. The contents
of the registers are the same in all initial configurations.

A configuration C is indistinguishable from a configura-
tion C0 to a set of processes P if every process in P is in the
same state in C as it is in C0 and each register has the same
contents in C as it does in C0.

A step e by a process p is applicable at a configuration C
of ⇧ if e is the next step of process p given its state in C.
If e is a read from a register r, then e returns the contents
of r in C. Otherwise, if e writes the value v to register r,
then the contents of register r is set to v and e returns an
acknowledgement. If e is applicable at C, then we use Ce
to denote the configuration resulting from p taking step e.

A sequence of steps ↵ = e1, e2, . . . is applicable at a con-
figuration C of ⇧ if e1 is applicable at C and, for each i � 1,
ei+1 is applicable at Ce1 · · · ei. In this case, ↵ is an execu-
tion from C. A configuration C of ⇧ is reachable if there
exists a finite execution from an initial configuration of ⇧
that results in C.
For a finite execution ↵ from a configuration C of ⇧, we

use C↵ to denote the configuration reached after applying
↵ to C. Note, if ↵ is empty, then C↵ = C. We say an
execution ↵ is P -only, for a set of processes P , if all steps
in ↵ are by processes in P . Note, if configurations C and
C0 are indistinguishable to a set of processes P , then any
P -only execution from C is applicable at C0.
Using this terminology, a consensus protocol ⇧ is non-

determinstic solo terminating if, for every process, p, and
every reachable configuration, C, of ⇧, there exists a {p}-
only execution ↵ from C such that p has decided a value
(and terminated) in C↵.

3. LOWER BOUND
Let ⇧ be any nondeterministic solo terminating binary

consensus protocol for n � 2 processes. In this section,
we show that ⇧ uses at least n � 1 registers, even if the
registers are of unbounded size. In Section 3.1, we describe
a more refined notion of valency. In Section 3.2, we extend
some traditional ideas of covering arguments, taking into
account our notion of valency. The proof of the main result
is presented in Section 3.3.

3.1 Valency
The notion of the valency of a configuration was intro-

duced by Fischer, Lynch, and Paterson [FLP85]. Informally,
they consider the values that can decided by processes from
a reachable configuration of a binary consensus protocol.
The configuration is bivalent if both 0 and 1 can be decided.
Otherwise, the configuration is univalent.
We refine their notion of valency by considering the values

that specific (non-empty) subsets of the processes can decide
from a reachable configuration. In this view, the notion of
valency is no longer attached to the entire configuration, but
to subsets of processes in the configuration.

Definition 1. Let C be a reachable configuration of ⇧,
and let P be a non-empty set of processes. P can decide
v 2 {0, 1} from C if there exists a P -only execution from C
in which v is decided. If P can decide both 0 and 1 from
C, then P is bivalent from C. If P can decide v, but not v,
from C, then P is v-univalent from C.

The following facts are easy consequences of Definition 1.

Proposition 1. Let C be a reachable configuration and
let P be a non-empty set of processes.

(i) P can decide some value from C.

(ii) If P can decide v 2 {0, 1} from C, then any superset
of P can decide v from C.

(iii) If P is v-univalent from C, then every non-empty sub-
set of P is v-univalent from C.

(iv) If ' is an execution from C in which v 2 {0, 1} is
decided, then P is v-univalent from C'.

A standard part of a valency argument is to show that
there is an initial bivalent configuration. In the next propo-
sition, this is stated a bit more carefully using our notion of
valency.

Proposition 2. There is an initial configuration I of ⇧
and processes p0 and p1 such that, for each v 2 {0, 1}, {pv}
is v-univalent from I, hence, {p0, p1} is bivalent from I.

Proof. For v 2 {0, 1}, let Iv be the initial configuration
where every process starts with v. By the Validity property
of consensus, every process is v-univalent from Iv. Consider
an initial configuration I where process p0 starts with input 0
and process p1 starts with input 1. The rest of the processes
may start with any input. Since no processes have taken
steps, for each v 2 {0, 1}, I is indistinguishable from Iv to
pv. Thus, {pv} is v-univalent from I.

The fact that a set of processes P is bivalent from a config-
uration C is not very helpful on its own. Indeed, the P -only
executions which decide 0 (or 1) may be very complex and
involve many processes. It is possible that the exclusion of
any particular process in P may suddenly make the remain-
ing processes univalent from C. Our next lemma shows that
this problem can be avoided, so we can do induction argu-
ments on |P |. It is one of the reasons why we introduced a
notion of valency defined for subsets of processes.
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Figure 2: Diagram of configurations for Lemma 1.

Lemma 1. Let C be a reachable configuration of ⇧ and
let P be a set of processes with |P | � 3. If P is bivalent
from C, then there exists a P -only execution ' from C and
a process z 2 P such that P � {z} is bivalent from C'.

Proof. Pick any two processes z1, z2 2 P . Let Q1 =
P � {z1} and Q2 = P � {z2}. Since |P | � 3, |Q1|+ |Q2| =
2|P |� 2 > |P | so Q1 \Q2 6= ; and Q1 [Q2 = P .
By Proposition 1(i), Q1 \ Q2 can decide v 2 {0, 1} from

C. Hence, by Proposition 1(ii), both Q1 and Q2 can decide
v from C. If Qi can decide v from C, then we are done with
z = zi and ' being the empty execution. So, assume Q1

and Q2 are both v-univalent from C.

“Cri1cal”	step		
of	q,	let	q2	Q1:	
Q2	is	bivalent

Q1	and	Q2	are	v-
valent		

Q1	and	Q2	are	
(1-v)-valent		



Valence and read-write: more properties
Lemma 2 Let P be bivalent from C, and ¯ be a block write (in C) 

by Rµ P. Then every deciding schedule from C by z not in P 
should contain a write not covered by R in C.

Lemma 3 Let P-R be bivalent from C, and ¯ be a block write by 
non-empty Rµ P. If Q=P-R is bivalent from C, then there 
exists Q-only schedule ϕ and q 2 Q such that R[{q} is 
bivalent from Cϕ¯.

 

Since P is bivalent from C, there is a P -only execution
 from C in which v is decided. By Proposition 1(iv), Q1

and Q2 are both v-univalent from C . Let  0 be the longest
prefix of  such that Q1 and Q2 are both v-univalent from C.
Then  0 6=  . Consider the next step � in  after  0. Since
Q1 [ Q2 = P , we may assume, without loss of generality,
that � is a step by a process in Q1. This is illustrated in
Figure 2.

Since Q1 is v-univalent from C 0, Q1 is v-univalent from
C 0�. Thus, Q2 is not v-univalent from C 0�, so Q2 can
decide v from C 0�. On the other hand, Proposition 1(iii)
implies that Q1 \ Q2 is v-univalent from C 0�. Thus, by
Proposition 1(ii), Q2 can decide v from C 0�. Therefore,
the claim is true with ' =  0� and z = z2.

3.2 Covering
The first covering argument is due to Burns and Lynch

[BL93]. Since then, covering arguments have become the
main tool for proving space lower bounds in shared memory
systems.

The main idea is the following: Suppose there is a set of
processes R that are about to write to a set of registers V .
Then any process z /2 R which needs the other processes
to see its actions must perform a write to a register not in
V . Otherwise, as observed in [BL93], the processes in R can
“obliterate” the information that z writes (to registers in V )
by performing their writes all at once. The next definition
formally captures these notions.

Definition 2. Let C be a reachable configuration of ⇧. A
process covers a register r in C if it is poised to perform
a write to r in C. If every process in a set of processes R
covers a register in C, then R is a set of covering processes
in C and a block write by R is an execution in which each
process in R performs its write (and nothing else).

Note that, if every process in R covers a di↵erent regis-
ter, then the order of the writes does not matter, since the
resulting configurations are indistinguishable. For technical
reasons, we consider R = ; a valid set of covering processes,
even though R covers no registers. In this case, the block
write by R is the empty execution.

Given a set of covering processes R in a configuration C, it
is tempting to think that any process z /2 R must write to a
register not covered by R before it can decide a value. If this
were true, then we could inductively obtain a configuration
in which n di↵erent registers are covered. Unfortunately,
this is not true. For example, if the set of all processes is
v-univalent from C, then z does not have to write anything.
It can simply decide v and terminate. The next lemma gives
us a way to guarantee that a process will write to a register
that is not covered. A similar result appears in all existing
space lower bounds for consensus [FHS98, Gel15, Zhu15].

Lemma 2. Let C be a reachable configuration of ⇧, let P
be a set of processes, let R ✓ P be a set of covering processes
in C, and let � be a block write by R. If P is bivalent from
C�, then, for every z /2 P , every deciding {z}-only execution
from C contains a write to a register not covered by R in C.

Proof. Let ⇣ be any {z}-only execution from C in which
some value v 2 {0, 1} is decided. By Proposition 1(iv), P is
v-univalent from C⇣. Since � is performed by processes in P ,
it follows that P is v-univalent from C⇣�. If all writes in ⇣

are to registers covered by R, then C⇣� is indistinguishable
from C� to P . This is impossible since P is bivalent from
C� and v-univalent from C⇣�.

A block write by a set of covering processes R ✓ P can
change P from being bivalent to being univalent. The next
lemma shows that, as long as the set of remaining processes,
P � R, is bivalent, it is possible to ensure that P remains
bivalent after the block write by R. The main configurations
in the proof are illustrated in Figure 3.
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Figure 3: Diagram of configurations for Lemma 3.

Lemma 3. Let C be a reachable configuration of ⇧, let
P be a set of processes, let R ✓ P be a non-empty set of
covering processes in C, and let � be a block write by R. If
Q = P � R is bivalent from C, then there exists a Q-only
execution ' from C and a process q 2 Q such that R [ {q}
is bivalent from C'�.

Proof. Since R 6= ;, by Proposition 1(i), there exists
v 2 {0, 1} such that R can decide v from C�. Since Q is
bivalent from C, there is a Q-only execution  from C which
decides v. By Proposition 1(iv), R is v-univalent from C .
Since � is a block write by R, R is v-univalent from C �.
Note that, since processes in R take no steps in  , their
block write, �, is applicable at C', for any prefix ' of  .
Let ' be the longest prefix of  such that R can decide v
from C'�. Then ' 6=  . Let � be the next step in  after
', which is by some process q 2 Q.
If � is a read or a write to a register covered by R, then

C'�� is indistinguishable from C'� to R and, hence, R
can decide v from C'��. This is impossible since R is v-
univalent from C'��. So � must be a write to a register not
covered by R and, hence, not written to in �. Thus, C'�� is
indistinguishable from C'�� to R, so R is v-univalent from
C'��. Since R can decide v from C'� and R can decide v
from C'��, R [ {q} is bivalent from C'�.

3.3 Main Result
We are now ready to prove the main technical lemma. We

begin with a high level outline. Intuitively, this lemma says
that, whenever we have a configuration C from which a set
of processes P is bivalent, we can reach a nice configuration
D from which a pair of processes in P is bivalent and the
remaining processes form a set of well spread covering pro-
cesses in D (i.e., every process covers a di↵erent register).
Combined with Lemma 3, this allows us to construct an in-

finite sequence of nice configurations D0, D1, D2, . . . , where
Di+1 is reachable from Di by an execution that contains a
block write by a set of well spread covering processes in Di.
There are only finitely many registers, so by the pigeonhole
principle, there are two distinct configurations Di and Dj

where the covering processes in Di and Dj cover the same
set of registers, V .

±	is	a	not	covered	
write:	R	cannot	
dis1nguish	Cϕ±¯	

and	Cϕ¯± 
) R[{q} is 

bivalent from Cϕ¯ 



The goal
If P, |P|¸ 2, is bivalent from C, then there exists 
P-only ® and Qµ P,	|Q|=2, such that
§  Q is bivalent from C® 

§  Every process in P-Q covers a distinct 
register in C® 

Proof by induction on |P|:

§  Base case |P|=2: any initial configuration from 
which some P={p,q} is bivalent

For |P|=n we are done: n-2 distinct registers are 
covered

C0



Induction step
P (of size ¸3) is bivalent from C, the claim hold for subsets 
of size |P|-1 

By Lemma 1, for some z2 P and P-only °, P-{z} is bivalent 
from D=C° 

By induction hypothesis, there exist D0, extension of D, and a 
pair Q0µ P-{z} such that 
§  Q0 is bivalent from D0 
§  P-{z}-Q0 cover distinct registers in D0

z		is	le+	fo
r	future	

(larger)	co
ver	

D0C

P	is	bivalent		
{p,q}µ	P-{z}	is	

bivalent		
P-{p,q}-{z}	cover	
dis1nct	registers	

D

P-{z}	is		
bivalent		



Induction step (ctd.)
Applying Lemma 3 and induction hypothesis repeatedly we get 
an infinite (P-{z})-only extension D0! D1 ! D3 !… 
§  D_i: some pair Q µ P-{z} is bivalent and the rest cover |P|-2 

registers

Di+1

{p’,q’}µ	P-{z}	is	
bivalent		

P-{p’,q’}-{z}	cover	
dis1nct	registers		

Di

Qµ	P	is	bivalent		
P-Q-{z}	cover	

dis1nct	registers	

(P-Q-z)[	{q}	
is	bivalent		

Lemma 3:
ϕi¯i

Hypothesis:
Ãi 



Induction step (ctd.)

But there are finitely many registers!
Some Di and Dj cover the same set of |P|-3!

Now, suppose that we have a process z /2 P . Consider
any solo execution by z starting from immediately before
the block write to V between Di and Di+1. By Lemma 2,
z writes to a register not in V . If we stop z immediately
before its first write to a register not in V , then, after the
block write, the processes in P can’t detect that z took any
steps. Thus, they can perform the same sequence of steps as
they did to reach Dj . The resulting configuration is a nice
bivalent configuration with a larger set of well spread cov-
ering processes (which includes z). This suggests that can
we use Lemma 1 to do induction on |P | to get successively
larger sets of well spread covering processes.

We now proceed with the formal proof. The construction
is illustrated in Figure 4.
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Figure 4: Diagram of configurations in Lemma 4.

Lemma 4. Let C be a reachable configuration of ⇧, and
let P be a set processes with |P | � 2. If P is bivalent from
C, then there exists a P -only execution ↵ from C and a pair
of processes Q ✓ P such that Q is bivalent from C↵ and
every process in P �Q covers a di↵erent register in C↵.

Proof. By induction on |P |. The base case is when |P | =
2 and the claim is satisfied with an empty execution ↵. Now,
suppose that |P | � 3 and the claim holds for |P | � 1. By
Lemma 1, there is a P -only execution � from C and z 2 P
such that P � {z} is bivalent from D = C�.

We construct a sequence of configurations (Di)i�0 reach-
able from D by (P � {z})-only executions such that, for
i � 0, there is a pair of processes Qi ✓ P � {z} that is
bivalent from Di and every process in Ri = (P � {z})�Qi

covers a di↵erent register. Furthermore, Di+1 is reachable
from Di by a (P � {z})-only execution ↵i that contains a
block write �i by Ri.

Constructing D0: Since P � {z} is bivalent from D and
|P � {z}| = |P |� 1, by the induction hypothesis, there is a
(P � {z})-only execution ⌘ from D and a pair of processes
Q0 ✓ P � {z} such that Q0 is bivalent from D0 = D⌘ and
every process in R0 = (P � {z}) � Q0 covers a di↵erent
register in D0.
Constructing Di+1: If Ri = ;, then let Di+1 = Di and

let ↵i+1 be empty. Otherwise, let �i be a block write by
Ri. Since Ri 6= ;, by Lemma 3, there is a Qi-only execution
'i from Di and a process q 2 Qi such that Ri [ {q} is
bivalent from Di'i�i. Hence, by Proposition 1(ii), P � {z}
is bivalent from Di'i�i. By the induction hypothesis, there
is a (P � {z})-only execution  i from Di'i�i and a pair of
processes Qi+1 ✓ P � {z} such that Qi+1 is bivalent from
Di+1 = Di'i�i i and every process in Ri+1 = (P � {z})�
Qi+1 covers a di↵erent register in Di+1. Let ↵i = 'i�i i.
Since there are only finitely many registers, there exists

0  i < j such that Ri covers the same set of registers in Di

as Rj does in Dj . We now insert steps of z so that no process
in P � {z} can detect them. Since ⇧ is a nondeterministic
solo terminating protocol, there is a {z}-only execution ⇣
from Di'i that decides a value v 2 {0, 1}. By Lemma 2, ⇣
contains a write to a register not covered by Ri in Di. Let ⇣

0

be the longest prefix of ⇣ containing only writes to registers
covered by Ri in Di. It follows that, in Di'i⇣

0, z is poised
to write to a register not covered by Ri in Di and, hence,
Rj in Dj .
Di'i⇣

0�i is indistinguishable from Di'i�i to P � {z}, so
the (P � {z})-only execution  i↵i+1 · · ·↵j�1 is applicable
at Di'i⇣

0�i. Let ↵ = �⌘↵0 · · ·↵i�1'i⇣
0�i i↵i+1 · · ·↵j�1.

Every process in P � {z} is in the same state in C↵ as
it is in Dj . In particular, Qj ✓ P � {z} is bivalent from
Dj and, hence, from C↵, and every process in Rj = (P �
{z}) � Qj covers a di↵erent register in Dj and, hence, C↵.
Moreover, since z takes no steps after Di'⇣

0, in C↵, z covers
a register not covered by Ri in Di and, hence, Rj in Dj or
C↵. Therefore, every process in Rj [ {z} = P � Qj covers
a di↵erent register in C↵.

The lower bound follows immediately from Lemma 4.

Theorem 1. Let S be an asynchronous shared memory
system with n � 2 processes. Then every nondeterministic
solo terminating binary consensus protocol ⇧ designed for S
uses at least n� 1 registers.

Proof. By Proposition 2, there is an initial configuration
I of ⇧ with processes p0 and p1 such that {pv} is v-univalent
from I and, hence, {p0, p1} is bivalent from I. In the case
when n = 2, if no process ever writes to a register, then p0
can decide 0 and p1 would not be able to tell the di↵erence.
Hence it can decide 1, which violates Agreement. Now, sup-
pose n � 3. By Lemma 4, starting from I, it is possible to
reach a configuration C0 from which a pair of processes, Q,
is bivalent and the remaining n � 2 processes, R, all cover
di↵erent registers. By Lemma 3, there is a Q-only execution
↵ from C0 and a process q 2 Q such that R[ {q} is bivalent
from C↵�, where � is the block write by R. Let z 2 Q�{q}.
By Lemma 2, z writes to a register not covered by R in its
solo terminating execution from C↵. Hence, ⇧ uses at least
|R|+ 1 = n� 1 registers.

4. CONCLUSION AND FUTURE WORK
We have shown that any nondeterministic solo terminat-

ing binary consensus protocol for n processes uses at least
n�1 registers. The best known randomized and obstruction-
free consensus protocols use n registers. We conjecture that
the true space complexity is n (we have proved this for n  3
in the general case and for n  4 in the anonymous case).
Another interesting avenue is to see if our techniques can

be used to prove an ⌦(n � k) space lower bound for k-set
agreement. This problem is a generalization of the consensus
problem which allows up to k di↵erent values to be decided.
In particular, consensus is another name for 1-set agreement.
The best existing protocols for k-set agreement use n�k+1
registers [BRS15].
Finally, the ⌦(

p
n) lower bound in [FHS98] actually holds

for historyless base objects, such as swap objects. It is not
clear how to modify our lower bound to work in this case.
The di�culty is that, when a process performs swap, it sees
the value it overwrote. Thus, it might be able to detect
whether some other process has performed a swap on this
object since it last accessed this object.

Qi	is	bivalent		
P-{z}-Qi	cover	

Qi+1	is	bivalent		
P-{z}-Qi+1	cover	
the	same	set	



Induction step (ctd.)
Run z from Diϕi until it decides: Diϕi³ 
z must write to a not covered register (Lemma 2), stop just 
before: Diϕi³’ 
No (P-{z}) extension of Diϕi ³’¯i can see the difference from Diϕi¯i 

Continue by P-{z} until D’j and get a cover by |P|-2 processes! 
For k=n, n-2 distinct registers are covered! 

All	writes	by	z	
are	hidden	by		
the	block	write	

indis1nguishable	
from	Di+1	
for P-{z}

Now, suppose that we have a process z /2 P . Consider
any solo execution by z starting from immediately before
the block write to V between Di and Di+1. By Lemma 2,
z writes to a register not in V . If we stop z immediately
before its first write to a register not in V , then, after the
block write, the processes in P can’t detect that z took any
steps. Thus, they can perform the same sequence of steps as
they did to reach Dj . The resulting configuration is a nice
bivalent configuration with a larger set of well spread cov-
ering processes (which includes z). This suggests that can
we use Lemma 1 to do induction on |P | to get successively
larger sets of well spread covering processes.

We now proceed with the formal proof. The construction
is illustrated in Figure 4.

C D D
0

Di D0
i+1

Di

� ⌘ ↵0
· · · Di+1 · · ·

↵i

· · ·
'i �i  i

Dj

⇣0

by Qi by P � {z}by {z} by Ri

· · ·

↵

↵i+1↵i�1 ↵j�1

C D D
0

Di

� ⌘ ↵0
· · · D0

i+1

· · ·
↵0
i

C↵

↵i+1↵i�1 ↵j�1

Figure 4: Diagram of configurations in Lemma 4.

Lemma 4. Let C be a reachable configuration of ⇧, and
let P be a set processes with |P | � 2. If P is bivalent from
C, then there exists a P -only execution ↵ from C and a pair
of processes Q ✓ P such that Q is bivalent from C↵ and
every process in P �Q covers a di↵erent register in C↵.

Proof. By induction on |P |. The base case is when |P | =
2 and the claim is satisfied with an empty execution ↵. Now,
suppose that |P | � 3 and the claim holds for |P | � 1. By
Lemma 1, there is a P -only execution � from C and z 2 P
such that P � {z} is bivalent from D = C�.

We construct a sequence of configurations (Di)i�0 reach-
able from D by (P � {z})-only executions such that, for
i � 0, there is a pair of processes Qi ✓ P � {z} that is
bivalent from Di and every process in Ri = (P � {z})�Qi

covers a di↵erent register. Furthermore, Di+1 is reachable
from Di by a (P � {z})-only execution ↵i that contains a
block write �i by Ri.

Constructing D0: Since P � {z} is bivalent from D and
|P � {z}| = |P |� 1, by the induction hypothesis, there is a
(P � {z})-only execution ⌘ from D and a pair of processes
Q0 ✓ P � {z} such that Q0 is bivalent from D0 = D⌘ and
every process in R0 = (P � {z}) � Q0 covers a di↵erent
register in D0.
Constructing Di+1: If Ri = ;, then let Di+1 = Di and

let ↵i+1 be empty. Otherwise, let �i be a block write by
Ri. Since Ri 6= ;, by Lemma 3, there is a Qi-only execution
'i from Di and a process q 2 Qi such that Ri [ {q} is
bivalent from Di'i�i. Hence, by Proposition 1(ii), P � {z}
is bivalent from Di'i�i. By the induction hypothesis, there
is a (P � {z})-only execution  i from Di'i�i and a pair of
processes Qi+1 ✓ P � {z} such that Qi+1 is bivalent from
Di+1 = Di'i�i i and every process in Ri+1 = (P � {z})�
Qi+1 covers a di↵erent register in Di+1. Let ↵i = 'i�i i.
Since there are only finitely many registers, there exists

0  i < j such that Ri covers the same set of registers in Di

as Rj does in Dj . We now insert steps of z so that no process
in P � {z} can detect them. Since ⇧ is a nondeterministic
solo terminating protocol, there is a {z}-only execution ⇣
from Di'i that decides a value v 2 {0, 1}. By Lemma 2, ⇣
contains a write to a register not covered by Ri in Di. Let ⇣

0

be the longest prefix of ⇣ containing only writes to registers
covered by Ri in Di. It follows that, in Di'i⇣

0, z is poised
to write to a register not covered by Ri in Di and, hence,
Rj in Dj .
Di'i⇣

0�i is indistinguishable from Di'i�i to P � {z}, so
the (P � {z})-only execution  i↵i+1 · · ·↵j�1 is applicable
at Di'i⇣

0�i. Let ↵ = �⌘↵0 · · ·↵i�1'i⇣
0�i i↵i+1 · · ·↵j�1.

Every process in P � {z} is in the same state in C↵ as
it is in Dj . In particular, Qj ✓ P � {z} is bivalent from
Dj and, hence, from C↵, and every process in Rj = (P �
{z}) � Qj covers a di↵erent register in Dj and, hence, C↵.
Moreover, since z takes no steps after Di'⇣

0, in C↵, z covers
a register not covered by Ri in Di and, hence, Rj in Dj or
C↵. Therefore, every process in Rj [ {z} = P � Qj covers
a di↵erent register in C↵.

The lower bound follows immediately from Lemma 4.

Theorem 1. Let S be an asynchronous shared memory
system with n � 2 processes. Then every nondeterministic
solo terminating binary consensus protocol ⇧ designed for S
uses at least n� 1 registers.

Proof. By Proposition 2, there is an initial configuration
I of ⇧ with processes p0 and p1 such that {pv} is v-univalent
from I and, hence, {p0, p1} is bivalent from I. In the case
when n = 2, if no process ever writes to a register, then p0
can decide 0 and p1 would not be able to tell the di↵erence.
Hence it can decide 1, which violates Agreement. Now, sup-
pose n � 3. By Lemma 4, starting from I, it is possible to
reach a configuration C0 from which a pair of processes, Q,
is bivalent and the remaining n � 2 processes, R, all cover
di↵erent registers. By Lemma 3, there is a Q-only execution
↵ from C0 and a process q 2 Q such that R[ {q} is bivalent
from C↵�, where � is the block write by R. Let z 2 Q�{q}.
By Lemma 2, z writes to a register not covered by R in its
solo terminating execution from C↵. Hence, ⇧ uses at least
|R|+ 1 = n� 1 registers.

4. CONCLUSION AND FUTURE WORK
We have shown that any nondeterministic solo terminat-

ing binary consensus protocol for n processes uses at least
n�1 registers. The best known randomized and obstruction-
free consensus protocols use n registers. We conjecture that
the true space complexity is n (we have proved this for n  3
in the general case and for n  4 in the anonymous case).
Another interesting avenue is to see if our techniques can

be used to prove an ⌦(n � k) space lower bound for k-set
agreement. This problem is a generalization of the consensus
problem which allows up to k di↵erent values to be decided.
In particular, consensus is another name for 1-set agreement.
The best existing protocols for k-set agreement use n�k+1
registers [BRS15].
Finally, the ⌦(

p
n) lower bound in [FHS98] actually holds

for historyless base objects, such as swap objects. It is not
clear how to modify our lower bound to work in this case.
The di�culty is that, when a process performs swap, it sees
the value it overwrote. Thus, it might be able to detect
whether some other process has performed a swap on this
object since it last accessed this object.



Finally!
Take k=n
Let {p,q} be bivalent in Dj’
{p,q}-only extension of Dj’ must write to a non-covered register

   

D’j{p,q}	is	bivalent		
¦-{p,q}	cover	R		

|R|=n-2	

Indistinguishable 
for ¦-{p,q}

n-1 registers covered!

¦-{p,q}	
decide	v		

{p,q}-only		
only R is 
written decide	1-v		



Wrapping up: covering/valence
§  Perturbable objects (CAS, counters, AS,…)

ü “pure covering” assuming long-lived (perturbable) 
operations: time&space

§  One-shot (non-perturbable) consensus
ü Covering&valence: space

§  The proofs are about constructing a (worst-
case) run

And now for something completely different 



Part II

Information theory



Ω(n log n) total work
in mutual exclusion:

The encoder/decoder argument

An �(n log n) Lower Bound on the Cost of Mutual Exclusion

Rui Fan Nancy Lynch
MIT CSAIL MIT CSAIL

rfan@theory.csail.mit.edu lynch@theory.csail.mit.edu

Abstract

We prove an �(n log n) lower bound on the number of
non-busywaiting memory accesses by any determinis-
tic algorithm solving n process mutual exclusion that
communicates via shared registers. The cost of the
algorithm is measured in the state change cost model,
a variation of the cache coherent model. Our bound
is tight in this model. We introduce a novel informa-
tion theoretic proof technique. We first establish a
lower bound on the information needed by processes
to solve mutual exclusion. Then we relate the amount
of information processes can acquire through shared
memory accesses to the cost they incur. We believe
our proof technique is flexible and intuitive, and may
be applied to a variety of other problems and system
models.

1 Introduction

In the mutual exclusion (mutex ) problem, a set of
processes communicating via shared memory access
a shared resource, with the requirement that at most
one process can access the resource at any time. Mu-
tual exclusion is a fundamental primitive in many dis-
tributed algorithms, and is also a foundational prob-
lem in the theory of distributed computing. Numer-
ous algorithms for solving the problem in a variety
of cost models and hardware architectures have been
proposed over the past four decades. In addition,
a number of recent works have focused on proving
lower bounds for the cost of mutual exclusion. The
cost of a mutex algorithm may be measured in terms
of the number of memory accesses the algorithm per-
forms, the number of shared variables it accesses, or
other measures reflective of the performance of the
algorithm in a multicomputing environment. In this
paper, we study the cost of a mutex algorithm us-
ing the state change cost model, a simplification of
the standard cache coherent model, in which an algo-

rithm is charged only for performing shared memory
operations causing a process to change its state. Let
a canonical execution consist of n di�erent processes,
each of which enters the critical section exactly once.
We prove that any deterministic mutex algorithm us-
ing registers must incur a cost of �(n log n) in some
canonical execution. This lower bound is tight, as the
algorithm of Yang and Anderson [13] has O(n log n)
cost in all canonical executions with our cost mea-
sure. To prove the result, we introduce a novel tech-
nique which is information theoretic in nature. We
first argue that in each canonical execution, processes
need to cumulatively acquire a certain amount of in-
formation. We then relate the amount of information
processes can obtain by accessing shared memory to
the cost of those accesses, to obtain a lower bound on
the cost of the mutex algorithm. Our technique can
be extended to show the same lower bound when pro-
cesses are allowed access to comparison-based shared
memory objects, in addition to registers. Further-
more, we believe that with some modifications, we
can use the techniques to prove an �(n log n) lower
bound on the cost of some canonical execution in the
cache coherent model. A report on these results is in
preparation.

We now give a brief description of our proof tech-
nique. Intuitively, in order for n processes to all en-
ter the critical section without colliding, the “visi-
bility graph” of the processes, formed by adding a
directed edge from each process that “sees” another
process, must contain a directed chain on all n pro-
cesses. Indeed, if there exist two processes, neither
of which sees the other, then an adversary can make
both processes enter the critical section at the same
time. To form a directed visibility chain, the pro-
cesses must all together collect enough information
to compute a permutation � � Sn. Such a permu-
tation takes �(n log n) bits to specify. We show that
in some canonical executions, each time the processes
perform some memory accesses with cost C, they gain

1



  

The result
Total work of any n-process mutual exclusion algorithm 
is 

The number of (non busy-waiting) memory accesses performed 
by p1,..,pn to enter CS 

ü  ¼ remote memory references (RMRs) in CC and DSM memory 
models [GW12,…] 

§  Tight [Yang&Anderson, 95]: 

§  Holds even for stronger primitives (CAS, …)



Mutual exclusion

§  No two processes are in 
their critical sections (CS) at 
the same time

§  Deadlock-freedom: at least 
one process in its trying 
section (TS) eventually 
enters its CS 
ü assuming no process fails or 

stays in its CS forever

Trying section

Critical section

Exit section



Peterson’s mutual exclusion
// initialization
level[0..n-1] = {-1};     // current level of processes 0…n-1
waiting[0..n-2] = {-1}; // the waiting process in each level 

// 0…n-2
 
// code for process i that wishes to enter CS
for (m = 0; m < n-1; m++) { 
    level[i] = m;
    waiting[m] = i;
    while(waiting[m] == i &&(exists k ≠ i: level[k] ≥ m)) {
        // busy wait
    }
} 
// critical section
level[i] = -1; // exit section  Total work O(n3)



  

The idea: acquiring information  
incurs costs

§  A canonical execution: every process enters 
CS exactly once

§  Processes (cumulatively) must learn about 
the order of CSs 

§  Getting O(C) bits of information ´ performing 
O(C) work

n! distinct orders ´ Ω(n log n) work



Visibility graph of a canonical run

pi “sees” pj ´ the CS of pi is causally preceded by CS of pj 
§  pj left CS before pi started its CS

Claim: in a canonical run, for every pi and pj, at least one 
sees the other

pk

pi

pj

can be driven to 
their CSs 

simultaneously

Let
p_i and p_j 
“miss” each 

other



Proof outline
1.  Construction step: for each permutation 
¼=¼1,…,¼n, build a (canonical) run ®¼ with 
order ¼ of CS accesses

2.  Encoding step: for each ®¼, produce a binary 
string E¼ of length O(cost(®¼)) 

3.  Decoding step: reproduce ®¼ given E¼ 

®¼ ¼ E¼ 

•  {E¼} is a code of {®¼}
•  Some codeword E¼ has 

length Ω(n log n)  
•  The cost of ¼ is Ω(n log n)  



1. Construction

 ®¼ is constructed iteratively: 
§   ®1: p¼1 enters CS and exits
§  From ®i to ®i+1: add a complete run of p¼i+1 so 

that no process, so that p¼1,...,p¼i do not see it
ü The trickiest part: maintain a partial order on 

metasteps (Mi,¹i) 
§  (Mn,¹n) ) ®¼ 

®¼ ¼ 

Metastep (on the same register):
•  Set of reads
•  Set of writes
•  Winning write
Signature: counts of reads and 
writes



2. Encoding

(Mn,¹n) ! E¼ 
Only metasteps are encoded
The cost of a metastep with k processes is O(k)
E¼ uses O(k) bits per metastep with k processes

®¼ E¼ 

p1 … pn

1 1

1

0 0

.. .. ..



3. Decoding

Iteratively compute the minimal “unexecuted” 
step:
§  Given the algorithm and the current state of 

each process
§  Compute the metastep’s composition

 ) (Mn,¹n)

®¼ E¼ 



Wrapping up
§  Not everything (computable sequentially) 

can be computed in a distributed way
ü Computable problems are subject to complexity 

bounds
§  There are many lower bounds but fewer 

techniques
ü Covering/valence/potential functions
ü Information theory
ü Combinatorial arguments



(Some) open questions
§  From n-1 to n for consensus/perturbable objects
§  (Solo) time complexity for OF consensus
§  Time/space for k-set consensus

ü Only anonymous case is explored
ü  Ω(\sqrt{nm/k}) for m-OF k-set consensus
ü  £(n+m-k) for repeated m-OF k-set consensus

§  Other system parameters
ü Progress guarantees
ü Contention

§  Other metrics/beyond worst-case
ü Throughput? (amortized complexity? scheduling?)

§  Computability bounds
ü Tight impossibility results: what is the weakest model for a 

given pb?



Merci beaucoup!
Questions? 
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Induction hypothesis
For all k=0,…,n-1, there exist schedules ®k, ¯k,°k such that:
§   ®k and ¯k do not contain pn
§  For k=0, ¯k=² (empty), for k>0,                         
¯k=p1,...,pk

§   °k 2 pn*

§  The set of objects accessed by pn in ®k¯k°k is 
{B1,...,Bk}

§  pn performs at most one inc() in ®k¯k°k
§  Let ¸k be any schedule of {pk+1,...,pn-1}. Then 

pn cannot distinguish ®k¸k¯k®k and ®k¯k®k 

 k=n-1 - we are done!  



Induction step
§  ®k and ¯k do not contain pn
§  ¯k is a block write by p1,...,pk  to registers 

B1,...,Bk 

§   °k 2 pn* and pn performs at most one 
operation in ®k¯k°k

§  Let ¸k be any schedule of {pk+1,...,pn-1}. Then 
pn cannot distinguish ®k¸k¯k®k and ®k¯k®k 

®k

“block write” to
B1,…,Bk

¯k °k by pn

only B1,…,Bk 
are accessed 

¸k

Processes in
{pk+1,…,pn-1}



Proof of Lemma 1
§  Take z1, z22 P
§  Let Q1=P-{z1} and Q2=P-{z2}, Q1Å Q2≠; 
§  Let  Q1Å Q2 decides v2{0,1} from C

ü If some Q_i decides 1-v from C - we are done 
C is bivalent: 1-v is decided in CÃ
There must be a critical step in Ã: from CÃ’ (“only v is decided 

by Q1 and Q2”) to CÃ’± (“some Qi decides 1-v”)
Let z (taking this step ±) be in Q1:
§  Q1 is v-valent from CÃ’z
§  Q2 is bivalent from CÃ’z


