Lower Bounds in Distributed Computing

Petr Kuznetsov

Telecom ParisTech
(supported by Hagit Attiya, Technion)

EPIT 2017
lle Porquerolles, France © Richard Schneider

Lower and upper bounds

If something can be computed, what are

the costs?
« Complexity metrics:
viime (e.g., number of StepS) GAIN VOLUME
v'space (number of shared memory locations) | / e

10 0 10

vtypically asymptotic wrt n (system size)
Lower bounds €2(f(n)) — required cost
Upper bounds O(f(n)) — exhibited cost
= Tight lower bounds: f(n)=g(n)

This class

overing/valency arguments
v'Time/space complexity of perturbable objects
v'Space complexity of obstruction-free consensus
« Information theory: encoder/decoder
v'Total work complexity of mutual exclusion

A Tight Space Bound for Consensus

ABSTRACT
e Existing n-process randomized wait-free (and obstruction-
y OQX‘?;A\ free) consensus protocols from regi all use at least n
K % i registers._In 1992, it was proved that such protocols must
PI a use 2(y/7) registers. Recently, this was improved to ©(n)
=F cgisters in the etting, where processes do not
=y = registers iv the anonymous setting, where processes do no
o oW e have identifers. Closing the gap in the general case, how-
» ‘\‘._el\ w\\" ever, remaincd an open problem. We resolve this problem
T o by proving that every randomized wait-free (or obstruction-
\ v‘i\ o free) consensus protocol for n processes must use at least
TN S n— 1 registers.
R
S s L CCS Concepts
S e S e e » Theory of computation — Coneurrency
» \\‘\;\‘ \,e:\\ \wﬁ_(,\\\n_ ™
ARt -m{a\\ Keywords
N ¥ Shared Memory Model, Conzensus, Space Complexity

INTRODUCTION

Perhaps the most studied problem in the theory of dis-
tributed computing is the consensus problem, which requires
n processes, each with an input value, to agree on a common
output value. An attractive application of the consensus
problem lies in implementing shared objects, such as stacks
or queues. Tn particular, if there is a wa 7Irv'r' pmmu)l for
number

o™
o
o\\

where each process decides in &
of its own steps, regardless of the speed or e of o
processes, then it is also possible to implement any shared
object in a wait-free manner [Her91]

Tt s impossible to deterministeally solve wait-free consen-
R

s in n sayochronons shesed memory ssten, o pr-

ggsses communicate by reading and writing shared m
*i@nmm called registers [LAAST]. However, it |~yo~~|hh‘
“iggis randomization [ACOS, AH90, AW96, CIL94]
Stically tight bounds are known for the total muiber of
stepsgaken by al processes [ACDY

IS
o
ey Pt
e 5 P n o e o s f s o o) o
B @ e e e i 0 it i e s
2 tht copis bar i noice and e ul it
 other soan

ot 0 T, rqires prior spie prtision
Recquest permissions from permissions @acT.or,

STOC *16, June 18-21, 2016, Cambridge, MA, US4

2016 ACM. ISBN 978-1-4503-4132-5/1606,

\\\‘

a“

e

o _

\0 & ASESING
o 0 L e ® S1500

Le% Zhu
- Department of Gomputer Science
University of Toronto

Canada
lezhu@cs.toronto.edu

On the other hand, tight bounds were not known for the
space complexity of this problem. In 1992, Fich, Herlihy,
and Shavt proved 3 spaco lower bound of QV) regis-

I existing protocols use at least n registers
(losing this gap has been a longstanding

ters [FHSO8]
AH90, AW «»n]
open problem,

Recently, we proved matching upper and lower bounds of
n registers for a restricted class of protocols, where processes
are anonymous (ie. they have no mcmmm> and memory-
Iess (i.e. they do not use local memory At the same
time, using very interesting, differes H*nhulqu«w Gelashvili
proved a lower bound of ©(n) registers for protocols with
without ﬂv(‘ memoryless assumptic
are anonymous protocols that use n
eisters [BRSIS, Zhld], the bound i tight. Thus, the
anonymous case of the problem is resolved to within a con-
stant factor

S

seneral case of th

problem, however, remained open.

There was even evidence suggesting the possibility of a pro-
tocol O(ym) space: Weak leader election is a closely
related, but provably weaker, problem. In this problen

rocesses must choose cxactly one leader, but cach process
only needs to know whether it has been chosen. An inno-
vative protocol for weak leader election, using O(y/n) regis
ters, was obtained [GHHW13] a fow years ago. Later, the
same authors improved this to O(logn), which is optinial

GHHW15].

Our contribution.

We resolve the general case of the problem by provirg that
any consensus protocol for n processes in an asynckronous
system uses at least n — 1 registers. Our lower bownd uses
refined notion of valency (introduced in (FLP85])
combined with a covering argument (introduced i [BL93])
As in [FHS98, Gell5, Zhul5], the hound holds even if the
registers are of unbounded size.

The lower bound shows that consensus is, fuadamentally
In particular, haying large reg-
ompensate for having too few registers. Since
there is a memoryless anonymous protocol fhat uses n re
isters [Zn15), having identifiers and large amounts of local
memory also cannot compensate for having too few registers.

A nice feature of our proof is that it is si nple and uses very
little machi This is a bit surprising given the difficulty

a communication problem.
isters ¢

bound for the anonymous case.

of the ©(y/m) lower bound and the subtlety of the 2(n) lower,,

ing
g € i 5 gy,
on iy, atip, Ve op L
ur ,u»(,‘ Proce "y O neg, TSt g, 0, gy, Cal oy,
Do\ Pro s Ssag | Lhey - Cdeg , Stap. Ma- Orjt, X
gyt ety S to g cay € rel, 11y, n lisly , cogy of
Mooy e 1, ’"mm, 0 cogt i, et Oesee, sy, 1 aly o Ya
Varg, Hexiyy, they - oy, oy, njg, " T p,
ot M iy Ty ey fig - Vhigy ¥ th
1 e gy Mty 1€ by, u
b1, i e 5, i,
s, A % o i
'0q, ang gy oy, iy, €
Ucy: Sy Uiy, U,
o t, Ste, Progg, 0. Iy, ive
Drgy, ¢y, oy n e, a
g, g, the . SSes ., V€ th,
Ay, %68 oo M exg Cogy . Can
Shap S co < the 5t ob,
o ey, iy, Sioy ,/” cogy L thog,, i
o Dt SOt Catiy, (7), e g OF e, e
Z 55 g OO '8y, o Ol 10
Y ey g, S cay itly g, Vi spy,” Proly Cosgeg Odeq ¢ Mutg,
1:,/,,%, g " e e e m,,,d len, TS e g Sty
led Is B g 2, ? sy oy, oy, 1,
algor ho vy, ey e 7 e he
iy gy Uorjyy g, s Zuw‘ Cor o, "V oo g,
e ity 1 4 hag ap W
n a)

ory, la ngy,
he . / &
Ty, € aly, € Cog, hag o Ve te, I
0 by, f ce) er ‘it
oS the T of e Mithy, Of s "w "(lr/,', C g e gy,
ol M g i, g g o Bt By i,
a e be, o € oy d 2r,
- gor, i ey " o b u(,x\ be vy /w(,,, Wing Direcye Dl
per, iy)l e 0 e) T Proce,, ! edg, !
8 the " stug Wiltjeo © Of g bl MBorjyy ety Csseg " Mgy O g
e Sty S0t o the o Pty Dergy © aceo " Der. vy, Widegg €
Uiy, Cha Cog, o oty CSseg, lich °a
e, Pang, Ot op"8 ey Oty SSes, T bogy el s,
‘ay, ¢ a iro, co or s
ol) 5t g ey L b, Yy ot e o

©r

ore

'lm

Part |

Covering

The iIdea

get their work done

Several processes may cover the
same location

= An operation must write to enough
distinct locations before terminating

» Otherwise, the operation is not
visible

ON AND COMPUTATION 107, 171-184 (1993)

Bounds on Shared Memory for Mutual Exclusion*

James E. Burns
Georgia Institute of Technology, Atlanta, Georgia 30332
AND
NaNcY A. LyNCH
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
The shared memory requirements of Dijkstra’s mutual exclusion problem are
examined. It is shown that » binary shared variables are necessary and sufficient

to solve the problem of mutual exclusion with guaranteed global progress for n
processes using only atomic reads and writes of shared variables for communication.

Covering and block writes

C Cp Cpoy
6 -“block write” v - p, runs solo and
B,,...,B, are on By,...,B, by completes an
“covered” by Pise-5Py operation
p1 yreny pr
4)
To be « seen » by p,
p,.1+ Must write outside
{B,,...,.B})
C Ca Cap Cafy
O O/\/M
“plock write”
p,,1 FuUNs solo B,,...,B, by p, runs solo

P1s-- 5P,

[.1: Perturbable complexity

SIAM J. COMPUT. © 2000 Society for Industrial and Applied Mathematics
Vol. 30, No. 2, pp. 438-456

TIME AND SPACE LOWER BOUNDS FOR NONBLOCKING
IMPLEMENTATIONS*

PRASAD JAYANTI!, KING TANT, AND SAM TOUEGH

Abstract. We show the following time and space complexity lower bounds. Let Z be any
randomized nonblocking n-process implementation of any object in set A from any combination of
objects in set B, where A = {increment, fetch&add, modulo k counter (for any k > 2n), LL/SC bit,
k-valued compare&swap (for any k > n), single-writer snapshot}, and B = {resettable consensus}
U {historyless objects such as registers and swap registers}. The space complexity of Z is at least
n — 1. Moreover, if 7 is deterministic, both its time and space complexity are at least n — 1. These
lower bounds hold even if objects used in the implementation are of unbounded size.

This improves on some of the Q(y/n) space complexity lower bounds of Fich, Herlihy, and Shavit
[Proceedings of the 12th Annual ACM Symposium on Principles of Distributed Computing, Ithaca,
NY, 1993, pp. 241-249; J. Assoc. Comput. Mach., 45 (1998), pp. 843-862]. It also shows the near
optimality of some known wait-free implementations in terms of space complexity.

Key words. asynchronous shared memory algorithms, nonblocking, wait-free, synchronization,
randomized shared object implementations, space complexity, time complexity, lower bounds

AMS subject classifications. 68Q17, 68W15

PII. S0097539797317299

1. Introduction. Nonblocking and wait-free implementations of shared objects
have been the subject of much research. While there have been several results on when
such implementations are feasible and when they are not, results establishing their
intrinsic time and space requirements are relatively scarce, especially for randomized
implementations. In this paper, we present a technique by which one can obtain a
linear lower bound on the space complexity of several randomized nonblocking imple-
mentations. The technique also yields a linear lower bound on the time complexity of
several deterministic nonblocking implementations.

Specifically, our results are as follows. Let Z be any randomized nonblocking
n-process implementation of any object in set A from any combination of objects
in set B, where A = {increment, fetch&add, modulo k counter (for any k > 2n),
LL/SC bit, k-valued compare&swap (for any k > n), single-writer snapshot}, and
B = {resettable consensus} U {historyless objects}. (Roughly speaking, an object is
historyless if each of its operations either does not affect the state of the object or
overwrites the previously applied operations. Examples include registers, test and set
objects, and swap registers.) The space complexity of 7 is at least n — 1. Moreover, if
7 is deterministic, both its time and space complexity are at least n — 1. These lower
bounds hold even if objects used in the implementation are of unbounded size.

Some of the results in this paper improve known lower bounds, while others
are completely new. In particular, Fich, Herlihy, and Shavit proved a Q(,/n) space

1 e . LT

The result (simplified)

Any linearizable obstruction-freedom
implementation of a counter from read-
write registers has

> n-1 space complexity
> n-1 solo step complexity

Space and (solo-step) time complexity
is ©(n) [Attiya et al., JACM’09]

Obstruction-freedom

An operation is guaranteed to return
iIf it runs in isolation (no step
contention) for sufficiently long

-
—
——

— Y
solo step complexity

OF read-write implementations:
consensus, CAS, counters,...

Model assumptions

= Processes II={p,,...,p,} COMmunicate via
reading and writing to shared base objects

= Every process is assigned a deterministic
(counter) algorithm

« Every process runs inc() operations, one
after another

v The state of the system is determined by a
schedule --- a sequence in IT

Induction hypothesis

For all k=0,...,n-1, there exist schedules «,,
B,V such that:

Any A\,
by {Pys1s--+5 Pr-1f 6
by {p1s---:Pn-1} “plock write” to by p,: only B,...,B,
By,..,B, are accessed
by py,..-sPx (at most one inc())
p,, does not
notice A

k=n-1 - we are done!

Base case

« k=0
ay=0="7,=€ (empty schedules)

Suppose the hypothesis holds for
0< k<n-1

Induction step: A\, can “perturb” p,

Ak vby p,
Processes in “plock write” to only B4,...,B,
{Prstse-sPnatt B.,...,B, are accessed

Claim: p, must access some B,
outside {B1, B, } before returning in ~

Suppose not: p, returns v only
accessing B,,...,B,

W WW

p, can be “perturbed” by A\,
)‘k ’be Pn

Squeeze v+1 “block write”to only B,,...,B,
inc() ops By,...,By are accessed

by Pk+1

return v

oy, - extend o, until p,,, Is about to write

to some B,,, outside {B,,...,B,}

B=P15-++3Pks1
Yis - €Xtend ~, until p, accesses B, ,

Perturbable objects

There exists an assignment of operations such that
for every schedule a3~ such that

= « and g do not contain p,
= (s by a proper subset of {p,...p,.1}
= v € p,and p, runs exactly one operation in a3~y

- For some p/{py,....pn.1;-PSET(B), 3 A € p/t p,
does not complete its operation or returns a
different response in a\Ga and afa

2(n) time/space hold for randomized
implementations of perturbable objects (CAS,
counters, atomic snapshots)
from historyless primitives (read-write, swap, ...)

consensus.

[.2: Space complexity of
valence and

covering

A Tight Space Bound for Consensus

Leqi Zhu
Department of Computer Science
University of Toronto

Canada
lezhu@cs.toronto.edu

ABSTRACT

Existing n-process randomized wait-free (and obstruction-
free) consensus protocols from registers all use at least n
registers. In 1992, it was proved that such protocols must
use Q(y/n) registers. Recently, this was improved to ©(n)
registers in the anonymous setting, where processes do not
have identifiers. Closing the gap in the general case, how-
ever, remained an open problem. We resolve this problem
by proving that every randomized wait-free (or obstruction-
free) consensus protocol for n processes must use at least
n — 1 registers.

CCS Concepts

o Theory of computation — Concurrency

Keywords

Shared Memory Model, Consensus, Space Complexity

1. INTRODUCTION

Perhaps the most studied problem in the theory of di
tributed computing is the consensus problem, which requir
n processes, each with an input value, to agree on a common
output value. An attractive application of the consensus
problem lies in implementing shared objects, such as stacks
or queues. In particular, if there is a wait-free protocol for
consensus, where each process decides in a finite number
of its own steps, regardless of the speed or failure of other
processes, then it is also possible to implement any shared
object in a wait-free manner [Her91].

It is impossible to deterministcally solve wait-free consen-
sus in an asynchronous shared memory system, where pro-
cesses communicate by reading and writing shared memory
locations, called registers [LAA8T]. However, it is possible
using randomization [ACO8, AH90, AW96, CIL94]. Asymp-
totically tight bounds are known for the total number of
steps taken by all processes [ACO8].

On the other hand, tight bounds were not known for the
space complexity of this problem. In 1992, Fich, Herlihy,
and Shavit proved a space lower bound of (y/7) reg
ters [FHSO8]. All existing protocols use at least n registers
[AH90, AV Closing this gap has been a longstanding
open problem.

Recently, we proved matching upper and lower bounds of
n registers for a restricted class of protocols, where processes
are anonymous (i.e. they have no identifiers) and memory-
less (i.e. they do not use local memory) [Zhul5]. At the same
time, using very interesting, different techniques, Gelashvili
proved a lower bound of Q(n) registers for protocols with
anonymous processes, without the memoryless assumption
[Gell5]. Since there are anonymous protocols that use n
registers [BRS15, Zhul5], the bound is tight. Thus, the
anonymous case of the problem is resolved to within a con-
stant factor.

The general case of the problem, howev
There was even evidence suggesting the possibility of a pro-
tocol using O(y/n) space: Weak leader election is a closely
" but provably weaker, problem. In this problem,

remained open.

ses must choose exactly one leader, but each process
only needs to know whether it has been chosen. An inno-
vative protocol for weak leader election, using O(y/n) reg
ters, was obtained [(HHW13] a few years ago. Later, the
same authors improved this to O(logn), which is optimal
[GHHW15].

Our contribution.

We resolve the general case of the problem by proving that
any consensus protocol for 7 processes in an asynchronous
system uses at least n — 1 registers. Our lower bound uses
a more refined notion of valency (introduced in [FLPS5])
combined with a covering argument (introduced in [BL93]).
As in [FHS98, Gell5, Zhul5], the bound holds even if the
registers are of unbounded size.

The lower bound shows that consensus is, fundamentally,
a communication problem. In particular, having large reg-
isters cannot compensate for having too few registers. Since

The result

Space complexity of any obstruction-
free binary consensus implementation
IS n-1

©(n) space complexity [AGHK09,BRS15] X

(applies to randomized consensus t00)

1
. 1 After

1

0
‘ ‘ 1 1

Before

Refined model assumptions

Processes II={p,,...,p,} cOmmunicate via
reading and writing to shared base objects

Every process is assigned a deterministic
algorithm

Configuration

v Local state for each process

v’ State of each register

Initial configuration
v Input assignment
v Registers in initial states

Configuration C and schedule a € IT" define a
configuration Ca

Valence of a configuration

C is v-valent (for v in {0,1}) if v is decided in every
extension of C

C is bivalent if both 0 and 1 can be decided in extensions
of C

Every configuration is O-valent, or 1-valent, or bivalent.
If some process decides v in C, then C is v-valent
No process can decide in a bivalent run

Refined valence of a configuration

Let C be a configuration and PCII

P is v-valent from C (for v in {0,1}) if v is decided in every P-only
extension Ca

P is bivalent from C if both 0 and 1 can be decided in P-only
extensions of C

For all C and non-empty P:
P is O-valent, or 1-valent, or bivalent from C

If P is v-valent in C, then any non-empty P’C P is v-valent
from C

Valence: more properties

Lemma 1 If P (IPI> 3) is bivalent from C, then there exists a P-
only schedule ¢ and ze P such that P-{z} is bivalent from Cq

Proof: Take z,, z,€ P, let Q;=P-{z,} and Q,=P-{z,}, Q;" Q=0

only only only only only only only only 0.1 only
v v v v v v v v v
Q, and Q, are v- “Critical” step Q, and Q, are
valent of g, let g€ Q;: (1-v)-valent

Q, is bivalent

Valence and read-write: more properties

Lemma 2 Let P be bivalent from C, and be a block write (in C)
by RC P. Then every deciding schedule from C by z not in P
should contain a write not covered by R in C.

Lemma 3 Let P-R be bivalent from C, and § be a block write by
non-empty RC P. If Q=P-R is bivalent from C, then there
exists Q-only schedule ¢ and g € Q such that Ru{q} is
bivalent from Cqp.

by R 1\ B by R
is @ not covere
. write: R cannot :

1:% l:adistinguish Ccpéﬁz:% R
' and Co(3d '
= RU{qtis % %

bivalent from Copg

The goal

If P, IPI> 2, is bivalent from C, then there exists
P-only a and QC P, |Q]=2, such that

= Qs bivalent from Ca

Every process in P-Q covers a distinct
register in Ca

Proof by induction on IPI:

Base case |IPI=2: any initial configuration from
which some P={p,q} is bivalent

For IPI=n we are done: n-2 distinct registers are
covered

Induction step

P (of size >3) is bivalent from C, the claim hold for subsets
of size IPI-1

By Lemma 1, for some z< P and P-only ~, P-{z} is bivalent cuture
from D=C~ 7 isleftfor

(large") covet

By induction hypothesis, there exist D,, extension of D, and a
pair Q,C P-{z} such that

Q, is bivalent from D,

P-{z}-Q, cover distinct registers in D,

C D D,
AV VO AV Va®

P is bival {p,q}C P-{z}is
's bivalent P-{z} is bivalent
bivalent P-{p,a}-{z} cover
distinct registers

Induction step (ctd.)

Applying Lemma 3 and induction hypothesis repeatedly we get
an infinite (P-{z})-only extension D,— D; — D5 —...

« D_i: some pair Q C P-{z} is bivalent and the rest cover IPI-2
registers

L 3: Hypothesis:
Di erz’rga Y, I:)i+1
WWQ
QC P is bivalent (P-Q-z)U {q} {p’,q’.}g P-{z} i
P-Q-{z} cover is bivalent bivalent

P-{p’,q’}-{z} cover

distinct registers o ,
distinct registers

Induction step (ctd.)

But there are finitely many registers!
Some D; and D, cover the same set of |PI-3!

a : a : e : - ‘ : ‘OCH_1 aj_l

Q, is bivalent Q,, is bivalent

i+1

P-{z}-Q, cover P-{z}-Q,,, cover
the same set

Induction step (ctd.)

Run z from Do, until it decides: D¢

z must write to a not covered register (Lemma 2), stop just
before: D,

No (P-{z}) extension of D, ('3, can see the difference from D.g.5.

i ¢ Bi (B
by Q; ”by {~z’} ‘ by R; by P — {z}

All writes by z indistinguishable
are hidden by from D,
the block write for P-{z}

Continue by P-{z} until D’; and get a cover by IPI-2 processes!
For k=n, n-2 distinct registers are covered!

Finally!

Take k=n
Let {p,q} be bivalent in D/’
{p,q}-only extension of D;” must write to a non-covered register

{p,q}-only
only Ris
j written

I11-{p,q} cover R
|IR|=n-2 W

{p,q} is bivalent D’
decide 1-v

11-{p,q}
decide v Indistinguishable

for II-{p,q}

n-1 registers covered!

Wrapping up: covering/valence

« Perturbable objects (CAS, counters, AS,...)

v'“pure covering” assuming long-lived (perturbable)
operations: time&space

« One-shot (non-perturbable) consensus
v'Covering&valence: space

= The proofs are about constructing a (worst-
case) run

And now for something completely different

Part I

Information theory

n log n) total work
iIn mutual exclusion:

The encoder/decoder argument

An Q(nlogn) Lower Bound on the Cost of Mutual Exclusion

Rui Fan
MIT CSAIL

rfan@theory.csail.mit.edu

Abstract

We prove an Q(n log n) lower bound on the number of
non-busywaiting memory accesses by any determinis-
tic algorithm solving n process mutual exclusion that
communicates via shared registers. The cost of the
algorithm is measured in the state change cost model,
a variation of the cache coherent model. Our bound
is tight in this model. We introduce a novel informa-
tion theoretic proof technique. We first establish a
lower bound on the information needed by processes
to solve mutual exclusion. Then we relate the amount
of information processes can acquire through shared
memory accesses to the cost they incur. We believe
our proof technique is flexible and intuitive, and may
be applied to a variety of other problems and system
models.

1 Introduction

Nancy Lynch
MIT CSAIL

lynch@theory.csail.mit.edu

rithm is charged only for performing shared memory
operations causing a process to change its state. Let
a canonical execution consist of n different processes,
each of which enters the critical section exactly once.
We prove that any deterministic mutex algorithm us-
ing registers must incur a cost of Q(nlogn) in some
canonical execution. This lower bound is tight, as the
algorithm of Yang and Anderson [13] has O(nlogn)
cost in all canonical executions with our cost mea-
sure. To prove the result, we introduce a novel tech-
nique which is information theoretic in nature. We
first argue that in each canonical execution, processes
need to cumulatively acquire a certain amount of in-
formation. We then relate the amount of information
processes can obtain by accessing shared memory to
the cost of those accesses, to obtain a lower bound on
the cost of the mutex algorithm. Our technique can
be extended to show the same lower bound when pro-
cesses are allowed access to comparison-based shared
Further-

memarv ohiects in addition tn recisters

The result

Total work of any n-process mutual exclusion algorithm

s
(A(nlogn)

The number of (non busy-waiting) memory accesses performed
by py,..,p,, t0 enter CS

v ~ remote memory references (RMRs) in CC and DSM memory
models [GW12,...]

= Tight [Yang&Anderson, 95]:
©(nlogn)

Holds even for stronger primitives (CAS, ...)

Mutual exclusion

« No two processes are in
their critical sections (CS) at Trv .
_ rylng section
the same time

. Deadlock-freedom: at least Critical section

one process in its trying
section (TS) eventually Exit section
enters its CS

v’assuming no process fails or
stays in its CS forever

Peterson’s mutual exclusion

// initialization

level[0..n-1] = {-1}; // current level of processes 0..n-1
waiting[0..n-2] = {-1}; // the waiting process in each level
// 0..n-=2

// code for process i that wishes to enter CS
for (m = 0; m < n-1; m++) {

level[i] = m;
waiting[m] = 1i;
while(waiting[m] == 1 &&(exists k # 1i: level[k] =z m)) {

// busy wait

}
}
// critical section 3
level[i] = -1; // exit section TOtaI Work O(n)

The idea: acquiring information
Incurs costs

= A canonical execution: every process enters
CS exactly once

« Processes (cumulatively) must learn about
the order of CSs

« Getting O(C) bits of information = performing
O(C) work

n! distinct orders = Q(n log n) work

Visibility graph of a canonical run

p, “sees” p; = the CS of p; is causally preceded by CS of p,
p; left CS before p; started its CS

Claim: in a canonical run, for every p; and p;, at least one
sees the other

Pi
Let
P! agd P can be driven to
Pk miss” each B
other thelr SS

Pp; simultaneously

Proof outline

. Construction step: for each permutation

T=T,...,M,, DUIld a (canonical) run «._ with
order ofn CS accesses

. Encoding step: for each «_, produce a binary
string E_ of length O(cost(a.))

. Decoding step: reproduce «a_ given E_

m . {E }is a code of {o_}

some codeword E_ has

length Q(n log n)
—a, b . Thecostofris Q(n log n)

1. Construction

T o>

o IS constructed iteratively:
= 4. p., enters CS and exits
= From o; to o, .: add a complete run of p_;,; SO

I+1°

that no process, so that p_,,...,p.;do not see it

v'The trickiest part: maintain a partial order on
metasteps (Mi’ ji) Metastep (on the same register):
- Setof reads
. (Mn,jn) — aﬂ - Set of writes
Winning write
Signature: counts of reads and
writes

2. Encoding

(Mn, =) — E;

Only metasteps are encoded

The cost of a metastep with k processes is O(k)
E_uses O(k) bits per metastep with k processes

oF Pn
1 1

1
0 0

3. Decoding

lteratively compute the minimal “unexecuted”
step:

= Given the algorithm and the current state of
each process

« Compute the metastep’s composition

= (Mp, =)

Wrapping up

= Not everything (computable sequentially)
can be computed in a distributed way

v’ Computable problems are subject to complexity
bounds

= There are many lower bounds but fewer
techniques
v'Covering/valence/potential functions
v'Information theory T —
v'Combinatorial arguments

Impossibility Results for
Distributed Computing

(Some) open questions

From n-1 to n for consensus/perturbable objects
(Solo) time complexity for OF consensus

Time/space for k-set consensus

v'Only anonymous case is explored

v Q(\sgri{nm/k}) for m-OF k-set consensus

v' ©(n+m-k) for repeated m-OF k-set consensus
Other system parameters

v'Progress guarantees

v’ Contention
Other metrics/beyond worst-case

v Throughput? (amortized complexity? scheduling?)
Computability bounds

v'Tight impossibility results: what is the weakest model for a
given pb?

Merci beaucoup!
Questions?

43

Induction hypothesis

For all k=0,...,n-1, there exist schedules o, G,
such that:

o, and G, do not contain p,
For k=0, B,=e (empty), for k>0,
Bk=P1;-+-P;

Tk S pn*

The set of objects accessed by p,, in oy 5,7, IS
{B,-..,By}

p, performs at most one inc() in o, 5,7,

Let \, be any schedule of {p,,4,...,p,.1}- Then
p, cannot distinguish o\, 8.y, and o, G,

k=n-1 - we are done!

Induction step

= oy and [, do not contain p,

= [Is a block write by p4,...,p, 10 registers
By,...,B,

= Y € p, and p, performs at most one
operation in oy B,

- Let)\, be any schedule of {p,,,,...,p,.1}- Then
p,, cannot distinguish o4\, 8., and o, B,

)‘k Yk by Pn
Processes in “block write” to only B,,..., B,

{Pusts-- Pt} B,...,By are accessed

Proof of Lemma 1

- Take z,, z,€ P
« Let Q=P-{z,} and Q,=P-{z,}, ;1 Q,=0
« Let Q;N Q,decides v&{0,1} from C

v If some Q i decides 1-v from C - we are done
C is bivalent: 1-v is decided in Cy

There must be a critical step in ¢: from Cv’ (“only v is decided
by Q, and Q,”) to Cv¢’) (“some Q, decides 1-v”)

Let z (taking this step) be in Q;:
= Q, is v-valent from C’z
= Q, is bivalent from Cq’z

