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This problem is about solving weak coloring of connected networks, that is, the objective is to assign
a color to each node such that every node has at least one neighbor with a different color.

Question 1. Show that every connected network with at least two nodes is weakly 2-colorable (i.e.,
every connected network with n ≥ 2 nodes has a weak coloring using just two colors).

Question 2. Propose a randomized distributed algorithm for weak 2-coloring in the LOCAL model,
terminating in O(log n) rounds with probability at least 1 − O(1/n) in n-node networks. (Prove the
correctness of your algorithm, and explain in details the arguments used in its analysis).

Question 3. Let G be a weakly c-colored graph, with c > 4. Let c′ be the smallest integer such that(
c′

bc′/2c
)
≥ c. Using the subsets of {1, . . . , c′} of cardinality bc′/2c, show how to reduce the number of

colors from c to c′ in one round.

Question 4. Assume that G is weakly c-colored with 2 < c ≤ 4. Show how to reduce the number of
colors to 2 in a constant number of rounds.

Question 5. Show that, starting from a graph G that is weakly k-colored for some k = O(1), one can
weakly 2-color G in a constant number of rounds. (One may use the fact

(
x
bx/2c

)
= 4x√

πx
(1 + o(1))).

— The End —



EPIT2017: Lower Bounds in Distributed Computing

Exercises

1 Covering and valence in consensus algorithms

Consider an obstruction-free binary consensus algorithm using atomic read-write registers. Re-
call that a configuration of such an algorithm specifies local states of the processes and states
of the shared registers.

Given a set of processes P ⊆ Π and a configuration C, we say that P is v-valent from C
if v is the only value that can be decided in Cα for any P -only schedule α. Respectively, P is
bivalent from C if it is not v-valent for any v ∈ {0, 1}.

Let P be bivalent from Cβ, where β is a block write by some R ⊆ P . Let γ be a schedule
of some z /∈ P such that z decides in Cγ. Show that z must write to a register not covered by
R in C.

2 Space complexity of mutual exclusion

Recall that in the mutual exclusion problem, every process is in the remainder section (RS)
initially, then it may enter its trying section (TS), then to its critical section (CS), and then to
its exit section (ES), after which it returns to its remaineer section.

It is required that:

• no two processes are in their critical sections at the same time, and

• assuming that no process fails in its trying or exit sections and never stays in its critical
section forever, at least one process in its trying section will eventually enter its critical
section.

1. Show that any 2-process read-write mutual-exclusion alogirithm requires at least 2 regis-
ters.

2. What about 3 processes? Can you show that 3 registers are necessary?

3. Finally, prove the general statement: n-process algorithm requires n registers.

Hint: starting with an execution E in which a single process enters its critical section, use
other processes, one by one, to “perturb” E by covering distinct registers in such a way that
no process can “witness” that they are not in the remainder section. It is recommended
to “reuse” processes by forcing them to enter CS over and over again (passing through
ES, RS, and TS).
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Prof. Patt-Shamir

Exercise

1. Consider the problem of finding the maximum input element, where inputs are from the domain

[1,M ] for some natural M > 1. Design a deterministic protocol that, given ε > 0, finds the

maximum to within a (1 + ε) factor in time D and uses messages of size O(ε−1 log logM).

Hint : Use the fact that log1+ε x = Θ(ε−1 log x) for 0 < ε ≤ 1.

2. Prove that the number of nodes n cannot be approximated to within any finite factor f by a

uniform (in particular, no IDs) deterministic protocol.

Hint : Think of two systems, one with n nodes and the other with (f + 1)n nodes in similarly

looking topologies, and analyze the evolution of a symmetric schedule.

3. Consider the Bellman-Ford algorithm in a synchronous environment with a single source node s.

In each round, the source sets ds := 0, and any other node v sets dv := min {du + 1 | (u, v) ∈ E}.
Assume that the variable d can take only non-negative values. Prove that regardless of the initial

state of the d variables, for any node v, dv eventually stabilizes on dist(s, v).

Hint : Prove that dv ≤ dist(s, v) after dist(s, v) rounds by induction on time, and similarly that

dv ≥ dist(s, v).

Extra credit: Prove the same claim for weighted graphs. What is the stabilization time in this

case?

4. Consider the MIS algorithm and analysis. Prove (by an argument) or disprove (by an example):

an edge can be removed but not killed.

5. Prove that with probability 1 − n−Ω(1), the MIS algorithm eliminates all edges in O(log n)

rounds.

Hint : Call a round is successful if it eliminates at least a 1/4 of the edges. Use Markov’s

inequality to prove that every round is successful with constant probability. Then use Chernoff’s

bound to show that w.h.p., out of any O(log n) rounds of the MIS algorithm, Ω(log n) rounds

are successful.

6. Prove that if k messages are routed along paths which are at most one edge longer than their

source-destination distance, then the number of delays cannot be greater than 2k − 2. Give a

parametric example (in k) where paths are at most one hop linger than the shortest, and there

is a message which actually suffers 2k − 2 delays. What’s the average delay in you example?
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Simple exercises related to Michel Raynal’s lectures

1 Exercise 1: on the kFK universal construction

Slides 44-56 presented a very simple universal construction suited to the computation model CARW[LL/SC].

This construction uses an internal procedure apply(), which is based on a “repeat twice” loop statement. Let

us redefine this operation where “repeat twice” is replaced by a “repeat until” statement as follows:

internal procedure apply() is

repeat

ls← STATE .LL();
pairs← BOARD .collect();
for ℓ ∈ {1, 2, · · · , n} do

if (pairs[ℓ].sn = ls.sn[ℓ] + 1 then

〈new state, r〉 ← δ(ls.value, pairs[ℓ].op);
ls.res[ℓ]← r; ls.sn[ℓ]← pairs[ℓ].sn

end if

end for

until STATE .SC(ls) end repeat.

Is this modification correct? If it is correct provide a proof of it. If it is incorrect, provide a counter-example.

2 Exercise 2: on operations on memory locations

Let us consider the model CARW[∅] enriched with the following atomic hardware-provided operations.

Hence (as the read and write operations) these operations can access any memory location, or the very same

location. Let X denote a memory location, and α an integer greater than 1.

• X.multiply(α) multiplies by α the value in X . (Hence if X = x when X.multiply(α) is invoked we

have X = α× x when it returns.)

• X.decrement() decrements by 1 the value in X . (Hence if X = x when X.decrement() is invoked

we have X = x− 1 when it returns.)

Show that in the system CARW[∅] enriched with multiply(α) and decrement() (in addition to read()),
consensus can be solved for ANY number of processes. To this end design (and prove correct) in this

computing model, a binary consensus algorithm which works for any number of processes.

If time permits (... much more difficult ...) try to show that binary consensus for 2 processes is impossible

in CARW[∅] enriched with only one of the operations decrement() or multiply(α)). (Actually, CARW[∅]
enriched with only one of these operations has consensus number 1.)
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1 Stateless Flooding

The network is represented as a graph G=(V,E), where V is a set of devices, and E is a set of edges that connect them.
An edge exists between two devices if they can send messages directly. Two such devices are called neighbors. The graph
is fixed maximum degree if there is constant k, independent of network parameters, such that each device has at most k
neighbors. The communication is bi-directional and the graph is undirected. A network is connected if there exists a path
between any two devices. Two messages are mates if the sender of each message is the receiver of the other.
Every device has a send queue SQ that collects messages to be sent. A message is transmitted by taking it from the

sender’s send queue, transferring it to the receiver and processing it according to the routing algorithm. In this paper, we
assume that this transferal and processing is done in a single atomic step. The atomicity of the step means that it may
not overlap with steps on this or other devices. In practice, only the neighbor device steps may not overlap.

Computation is a sequence of atomic steps that starts in an initial state of the algorithm. A computation is fair if every
message that is in a send queue SQ of some device is eventually either transmitted or removed from this queue during this
computation. That is, a message may not “get stuck” in a send queue forever. To reason about a routing algorithm, we
consider its fair computations. A computation is finite if it has a finite number of steps. A routing algorithm is terminating if
all its computations are finite. A terminating routing algorithm never leaves messages indefinitely circulating in the network.

The pseudcode for a tentative stateless flooding (SF) routing algorithm is shown in Figure 1. The algorithm is as follows.
The source device adds a message M(sender,receiver) to its send queue SQ to be sent to all devices in its neighbor set N .
When a device receives a message from neighbor a, it first checks its send queue for a mate. If a mate exists, both messages
are discarded. Otherwise, the device sends the message to all neighbors except a.

device s
foreach n2N do

add M(s,n) to SQ

device n
if receive M(a,n) then

if M(n,a)2SQ then
/* found mate */
discard M(n,a) from SQ

else
foreach m2N :m 6=a do

add M(n,m) to SQ

Figure 1: SF pseudocode.

Exercise 1. Show that SF guarantees termination and delivery from the source to all target devices connected to the source.

1


